自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(240)
  • 收藏
  • 关注

原创 dell r730 ESXi重启后找不到raid盘(待续)

在这之前的操作是在ESXi 的虚拟机FreeBSD里尝试安装nvidia驱动和anaconda,结果关机重启后,找不到虚拟机了,连raid盘都看不到。但是到了idrac里,时能看到raid0的盘的。dell r730 ESXi重启后找不到raid盘,报错ESXi error failed to connect to database ,怀疑是不小心硬关机导致的问题.....这里的关机是硬关机,我去按了面板上的那个按钮,可能就是因为这样导致连不上raid盘的。怎么解决,还不知道....我想静静.....

2024-04-23 21:54:55 67

原创 FreeBSD系统安装Tlsla P4专业AI计算卡(待续)

为了开机启动,把这句kld_list="nvidia-modeset"放入 /etc/rc.conf文件中。也可以用这条命令自动放:sysrc kld_list+=nvidia-modeset。为了开机启动,把这句kld_list="nvidia-modeset"放入 /etc/rc.conf文件中。也可以用这条命令自动放:sysrc kld_list+=nvidia-modeset。这时执行 nv-sglrun nvidia-smi ,可以看到CUDA是12.4。等系统好了再说,系统崩了,55555。

2024-04-23 21:51:36 664

原创 快速部署stable diffusion@Ubuntu

Stable Diffusion可以根据文本描述生成相关的图像,是当前最热门的文生图模型。在Ubuntu下,可以选择快速安装,或者手动一步步安装。

2024-04-22 22:50:54 733

原创 stable diffusion本地部署@win10

stable diffusion是当前非常出色的文生图模型,要优于以前gan文生图模型。现在有了stable-diffusion-webui软件,可以一键安装,大大简化了操作难度。本文档就是stable-diffusion-webui在windows 10上的安装实践。

2024-04-22 22:40:07 461

原创 使用飞桨快速部署stable diffusion模型

这可以说是最快的部署stable diffusion模型的方法了,而且星河社区还有免费的GPU算力提供,这样再也不用担心没有算力了!注意,模型限制77个字符的输入,超出会报错:is too long for context length 77。在V100下22秒输出一张图。可以看到画的图还是不错的。

2024-04-21 20:47:40 379

原创 python安装transformers包@FreeBSD

在FreeBSD系统python3.10下直接pip安装 Transformers ,会失败,卡在安装tokenizers这里,解决方法是手动编译安装tokenizers, 然后再安装transformers即可。Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过。

2024-04-21 18:37:42 129 1

原创 PyTorch and Stable Diffusion on FreeBSD

Stable Diffusion在图像生成领域具有广泛的应用和显著的优势。它利用深度学习和扩散模型的原理,能够从随机噪声中生成高质量的图像。FreeBSD下难度主要在Miniconda的安装上,pytorch等需要使用conda命令安装。Stable Diffusion部分跟其它linux平台的操作类似。学到的最主要的两点:1 FreeBSD下安装CUDA2 FreeBSD下安装Conda(Miniconda)

2024-04-20 23:04:57 621

原创 windows下如何安装git

在FreeBSD和Linux下习惯了pkg install 和apt install之后,windows下怎么安装git反而不会了。尤其是在github抽风的时候,不知道该到哪里去下载。在“Microsoft Store”里也没有找到,确切的说查找git后,显示出来的都是vscode、Visual Studio Code等,没有git。

2024-04-20 13:10:30 225

原创 安装Miniconda@FreeBSD13

近几年在学习和使用AI框架的时候,时时刻刻在想着如何在FreeBSD下进行训练和推理部署,可惜一直没有如愿。近几天在调试大模型的一些项目时,尝试将飞桨、torch和tensorflow装了个遍,可惜都没有成功。机缘巧合下,看到freebsd-stable-diffusion这个项目,了解到有linux-miniconda-installer这个软件包,并通过学习它而学到如何在FreeBSD下安装任意版本的Miniconda。本文档将两种安装方法都发布出来。

2024-04-19 12:27:37 1477 1

原创 python安装tokenizers包@FreeBSD

tokenizers提供了当今最常用的tokenizers的实现,重点关注性能和多功能性。在FreeBSD系统python3.10下直接pip安装tokenizers报错,于是改为手动安装。

2024-04-18 23:30:10 389

原创 python安装pytorch@FreeBSD

在FreeBSD系统下pip安装pytorch,报错安装pyproject再pip 安装pytorch还是同样的报错:查找帮助说:运行编译过程中出现错误,并提示“Too many arguments to functions call, expected....”的信息:遇到这种情况时,该如何解决呢?

2024-04-18 23:23:14 1056 1

原创 安装GPT 学术优化 (GPT Academic)@FreeBSD

gpt academic是非常好的工作助手,功能较多且实用。

2024-04-17 23:12:53 727

原创 pip安装swig@FreeBSD

SWIG (Simplified Wrapper and Interface Generator) 是一个用于连接 C/C++ 代码与其他高级编程语言(如Python、Java、C# 等)的工具。它允许开发人员将现有的 C/C++ 代码封装成可以在其他语言中调用的接口,而无需手动编写大量的代码。SWIG 的工作原理是,它读取 C/C++ 头文件,并根据这些头文件自动生成包装代码,用于将原生的 C/C++ 函数和数据结构映射到目标语言中。

2024-04-17 19:59:17 1155

原创 Create2024百度AI开发者大会记录

去年2023.3.16日百度文心大模型发布,今天2024.4.16日代码智能体:思考模型+代码解释器思考模型整合提示,输入给代码解释器代码解释器出结果,返回给思考模型,然后迭代。

2024-04-16 22:50:31 727

原创 吴恩达llama课程笔记:第七课llama安全工具

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B和70B(700亿)三种版本,满足不同场景和需求。吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

2024-04-16 15:26:06 904

原创 吴恩达llama课程笔记:第六课code llama编程

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B和70B(700亿)三种版本,满足不同场景和需求。吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

2024-04-15 22:26:01 718

原创 吴恩达llama课程笔记:第四课提示词技术

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B、33B和65B(650亿)四种版本,满足不同场景和需求。吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

2024-04-15 21:55:56 770

原创 荔枝派LicheePi 4A RISCV板子支持的好玩的AI模型

荔枝派LicheePi 4A 是基于核心板的 高性能 RISC-V Linux 开发板,以为主控核心([email protected], RV64GCV,4TOPS@int8 NPU, 50GFLOP GPU),板载最大 16GB 64bit LPDDR4X,128GB eMMC,支持 HDMI+MIPI 双4K 显示输出,支持 4K 摄像头接入,双千兆网口(其中一个支持POE供电)和 4 个 USB3.0 接口,多种音频输入输出(由专用 C906 核心处理)。

2024-04-14 22:43:08 1065

原创 第六十五回 时迁火烧翠云楼 吴用智取大名府-羊驼大模型的部署应用:llama.cpp和llama.c纯c编译安装部署 以及Ollama一键部署

LLaMA羊驼模型是元宇宙平台公司(Meta)公开发布的一款大型语言模型。该模型建立在Transformer基础架构上,采用了多层神经网络结构,有助于捕捉和学习数据中的复杂模式。这种设计使得LLaMA模型在自然语言处理方面表现突出,能够进行语义分析、情感识别和文本生成,广泛应用于人工智能各种场景。羊驼模型最显著的特点之一是它的开源性,这意味着任何研究人员或开发者都可以访问和使用该模型的源代码。此外,羊驼模型是在公开预训练数据上进行训练的,这保证了其通用性和可复现性。

2024-04-14 09:47:02 1351

原创 解锁智能未来:用Ollama开启你的本地AI之旅

Ollama是一个强大的工具,适用于希望在本地环境中探索和使用大型语言模型的用户,特别是那些对AI技术有深入兴趣和需求的专业人士。

2024-04-13 18:54:18 393

原创 春天到了,小花开了,大模型平民版gpt4free又整活了!

GPT4Free为普通人提供了学习、研究场合用的大模型服务,大大降低了大模型技术的门槛,让更多人有机会亲身体验到人工智能的魅力。让我们在GPT4Free的助力下,大家一起探索无限的知识海洋,发掘前所未有的创新潜能!

2024-04-13 14:57:52 991

原创 gpt4free报错集锦

后来又重新编译安装了glibc-2.32 ,还是一样的报错Segmentation fault。本来安装nodriver是为了解决一个问题才装的,结果反而带来了问题。装好之后运行ls等命令报错:Segmentation fault。升级ubuntu系统的glibc。问题没有解决,先搁置。

2024-04-12 20:28:34 797

原创 知道智源开源最强语义向量模型BGE是什么吗?

Hugging Face 模型镜像/bge-m3。

2024-04-12 10:45:52 807

原创 OpenDevin调试报错

确认系统资源(如CPU、内存和磁盘空间)是否充足,以便启动新的Docker容器。最终测试完毕,是国内的g4f api服务不稳定(或者说有时候连不上)导致的,换成莫斯科的就好了。另外v1/chat/completions测试通过,v1/models测试失败。这样使用g4f作为chatgpt的替代,还是没成功啊。显示:{"detail":"Method Not Allowed"}究其原因可能是前面的后台没有完全杀掉导致的。究其原因可能是前面的后台没有完全杀掉导致的。证明这个不能交互,要交互还是要用chat。

2024-04-11 23:15:21 772

原创 g4f姊妹篇:g4l gpt4local面世拉!

可喜的是,现在它的姊妹篇,gpt4local也面世拉!g4l是一个高级 Python 库,允许您使用llama.cpp绑定运行语言模型。它是 @gpt4free 的姊妹项目,也提供人工智能,g4l不需要联网调用openai的资源,也就是模型下载到本地后可以完全本地运行,不需要联网。

2024-04-11 23:09:29 598

原创 OpenDevin:人人可用的开源AI软件工程师

OpenDevin,这是一个开源项目,旨在复制 Devin,Devin 是一位自主的 AI 软件工程师,能够执行复杂的工程任务并与用户在软件开发项目上积极协作。该项目希望通过开源社区的力量复制、增强和创新 Devin。

2024-04-10 23:13:51 1249

原创 huggingface无法下载模型的问题解决

OpenDevin里面的embedding模型需要从huggingface下载,但是连不上,怎么办呢?我的解决方法是,通过报错信息,找到huggingface所在的文件。理论上只要设置这个环境变量,不需要再进去改源代码了。感觉离胜利很近了,但是还没有成功。再设置环境变量,乌拉,成功拉!试了一下,没有成功。

2024-04-10 23:09:43 285

原创 AI服务平台replicate

Replicate是一个提供优秀AI模型和工具的平台,旨在帮助用户实现各种人工智能任务。该平台汇集了来自各个领域的顶尖模型,涵盖了文本到图像生成、语言模型、图像编辑、超分辨率等多个领域。用户可以通过Replicate平台快速获取和应用先进的模型,以提升工作效率、创造力和创新能力。与星河社区、启智社区、Colab以及Kaggle相比,Replicate更侧重于模型的应用,而且是快速简单的应用。只要三行代码,就可以运行一个模型。对收费用户采用按量计费,比按时计费要划算很多。

2024-04-09 22:40:12 675

原创 你知道哪几种当前流行的lisp语言的方言?

估计很多人都看过《黑客与画家》这本书,这本书主要介绍黑客即优秀程序员的爱好和动机,讨论黑客成长、黑客对世界的贡献以及编程语言和黑客工作方法等所有对计算机时代感兴趣的人的一些话题。作者保罗格雷厄姆字里行间不经意间向大家推介Lisp是最好的编程语言。

2024-04-09 07:00:00 1033

原创 超级agent的端语言模型Octopus v2: On-device language model for super agent

语言模型在各种软件应用程序中显示出有效性,特别是在与自动工作流相关的任务中。这些模型具有调用函数的关键能力,这对于创建 AI 代理至关重要。尽管大规模语言模型在云环境中具有高性能,但它们通常与对隐私和成本的担忧有关。当前用于函数调用的设备端模型面临着延迟和准确性问题。我们的研究提出了一种新方法,该方法使具有 20 亿个参数的设备端模型在准确性和延迟方面都超过了 GPT-4 的性能,并将上下文长度减少了 95%。与具有基于RAG的函数调用机制的Llama-7B相比,我们的方法将延迟提高了35倍。

2024-04-08 21:19:32 1108

原创 线性代数难学怎么办?到星河社区让飞桨来帮忙!

参考自《动手学深度学习》《漫画线性代数》等。线性代数,这个在数学领域举足轻重的学科,是众多学科的基础,也是现代科技发展的重要支柱。从物理学、工程学,到计算机科学、经济学,线性代数的应用无处不在。本文将通过飞桨示例帮助我们学习线性代数的基本知识,探索数学之美。

2024-04-08 19:00:14 1452

原创 NAT网络地址转换原理解析

NAT(Network Address Translation),即网络地址转换,是一种在1994年提出的地址转换技术。它的主要目的是在本地网络中使用私有地址,在连接互联网时转而使用全局IP地址。NAT实际上是为解决IPv4地址短缺而开发的技术。

2024-04-07 22:55:02 609

原创 AI视觉入门:卷积和池化

从2012年以AlexNet为代表的模型问世以来,人工智能尤其是视觉cv部分飞速发展,在刚开始效果不如人类,到2015年在ImageNet1000数据集的表现就超过了人类。在Transformer模型出现之前,视觉模型的主要组成部分就是卷积和池化,AI就是靠卷积和池化实现了对人类的超越。

2024-04-07 21:44:40 698

原创 第六十四回 托塔天王梦中显圣 浪里白条水上报冤-测试框架pytest学习与实践

张顺到江南找安道全。张顺到了杨子江边,上了一艘渡船,因为连日赶路辛苦,吃了一碗饭倒头就睡了。结果被船家张旺绑了,到了江心给扔江里去了。张顺咬断绳子,游到南岸。见到了活闪婆王定六,给了张顺一身衣裳,并杀鸡置酒招待。张顺杨子江上被打劫,真是阴沟里帆船。俗话说小心驶得万年船,项目测试非常重要。测试框架pytest学习与实践

2024-04-07 12:08:16 1274

原创 以Kotti项目为例使用pytest测试项目

在维护和构建大型项目时,单独一个一个手工测试代码已经不适用了,这时候就要用专门的测试框架进行测试。让我们以Kotti项目为例,用pytest这个测试框架进行实践测试吧。使用python3.10 @Ubuntu 系统。

2024-04-06 10:17:53 1423

原创 测试框架pytest学习与实践

pytest是一个专业的测试框架,可以帮助我们对python项目进行测试,提高测试的效率。

2024-04-06 00:13:46 1291 1

原创 pytest的时候输出一个F后面跟很多绿色的点解读

输出中的“F”后面跟着很多绿色的点,意味着在测试套件中,有一个测试失败了,而其他的测试都通过了。应该查看失败的测试详情,了解为什么测试会失败,并据此修复代码或测试。原来在使用pytest进行测试时,输出中的“F”代表一个失败的测试(Failed),而绿色的点(.)代表一个通过的测试(Passed)使用pytest来测试pyramid和kotti项目,在kotti项目测试的时候,输出一个F后面跟很多绿色的点,是什么意思呢?可以在pytest的时候跟-v参数来看详细情况,以便知道失败的详情。

2024-04-06 00:11:19 788

原创 Shell GPT:直接安装使用的chatgpt应用软件

ShellGPT是一款基于预训练生成式Transformer模型(如GPT系列)构建的智能Shell工具。它将先进的自然语言处理能力集成到Shell环境中,使用户能够使用接近日常对话的语言来操作和控制操作系统。

2024-04-03 23:59:03 852

原创 FreeBSD下如何进行添加路由等配置?

FreeBSD系统可以当作一台路由器来使用,实际上当年路由器刚刚出来的时候,有很大一部分就是用主机安装FreeBSD来提供路由功能的。

2024-04-03 23:53:07 531

原创 BeanShell是一种完全符合Java语法规范的脚本语言吗?

BeanShell是一种完全符合Java语法规范的脚本语言,它拥有自己的一些语法和方法。作为一种松散类型的脚本语言,它与JavaScript在某些方面类似。BeanShell是用Java编写的,是一个小型、免费、可下载、嵌入式的Java源代码解释器,具有对象脚本语言的特性。其非常精简的解释器jar文件大小仅为175k。BeanShell能够执行标准的Java语句和表达式,同时还包括一些自身特有的脚本命令和语法。

2024-04-02 13:16:47 494

AIOCR:AI文字识别web集成系统@Kylin+RISCV

AIOCR:基于kotti_ai的AI文字识别web集成系统 在Kylin+RISCV搭建一个kotti_ai构架的网站,提供AI OCR文字识别web服务。 本系统已经在Kylin+RISCV(算能云)测试通过。理论上在Ubuntu和FreeBSd下应该也是可以的。 功能: 1 AI 文字识别功能即ocr推理 2 web集成功能即web内容管理系统 技术实现 ocr推理部分 飞桨框架安装,参见https://blog.csdn.net/skywalk8163/article/details/136610462 ocr推理,参见:飞桨AI应用@riscv OpenKylin-CSDN博客 web框架部分 Kotti_ai框架调通,参见:安装调试kotti_ai:AI+互联网企业级部署应用软件包@riscv+OpenKylin-CSDN博客 为kotti_ai添加ocr文字识别部分 。具体安装和使用,参考文档:https://blog.csdn.net/skywalk8163/article/details/136869487

2024-03-24

飞桨安装文件@算能云openKylin@ riscv64

算能云riscv64环境,openKylin系统,python3.8 飞桨安装文件,版本2.6 已编译好,直接pip install paddlepaddle-0.0.0-cp38-cp38-linux_riscv64 即可。 飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。目前,飞桨累计开发者1070万,服务企业23.5万家,基于飞桨开源深度学习平台产生了86万个模型。飞桨助力开发者快速实现AI想法,快速上线AI业务。帮助越来越多的行业完成AI赋能,实现产业智能化升级。

2024-03-12

MenuetOS 汇编语言编写的操作系统磁盘映像64位1.50版本

MenuetOS 是一个正在开发的 PC 操作系统,完全用 64 位汇编语言编写。功能包括具有多处理器支持和图形用户界面的抢占式实时多任务处理。Menuet64 在 GPL 下发布,Menuet32 在 GPL 下发布。Menuet 支持装配编程,以实现更快、更小、资源更少、资源消耗更少的应用程序。 MenuetOS 内核是用汇编语言编写的,与用其他语言编写的系统相比,它具有速度优势。例如,在主 x86-64 cpu 中计算具有透明度的 GUI,避免了与显卡的兼容性问题。 整个系统可以装在一个1.44M的软盘中,太不可思议了! 安装参考:https://blog.csdn.net/skywalk8163/article/details/136633986 本版本VituralBox 虚拟主机里menuetos的网络可以调通。

2024-03-12

MenuetOS 汇编语言编写的操作系统磁盘映像

MenuetOS 是一个正在开发的 PC 操作系统,完全用 64 位汇编语言编写。功能包括具有多处理器支持和图形用户界面的抢占式实时多任务处理。Menuet64 在 GPL 下发布,Menuet32 在 GPL 下发布。Menuet 支持装配编程,以实现更快、更小、资源更少、资源消耗更少的应用程序。 MenuetOS 内核是用汇编语言编写的,与用其他语言编写的系统相比,它具有速度优势。例如,在主 x86-64 cpu 中计算具有透明度的 GUI,避免了与显卡的兼容性问题。 整个系统可以装在一个1.44M的软盘中,太不可思议了! 安装参考:https://blog.csdn.net/skywalk8163/article/details/136633986

2024-03-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除