Mark 一下 detector ------之 Random Fern Classifier

    与之前的几个tracker(19-The ALIEN tracker applied to faces  22-Self-paced learning forlong-term tracking  12--Occlusion and motionreasoning for long-term tracking这些在每一帧上作检测)不同,当尺度最大得分Ys<Tr时,我们用Tr激活检测模块,为了节省计算资源,我们不用Rt作为detector,instead,我们用在线随机阙分类器[借鉴自Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learningdetection.也就是TLD]。当尺度最大得分Ys<Tr时,detector在整帧上面用滑动窗作检测。我们用一个保守的更新计划train一个在线随机阙检测器。设置C0或C1作分类标签指示器,被归类成小的蕨类的部分的f1,f2,f3,f4,f5,······,fN作二值特征。每个蕨类植物的特征的联合分布是

     

       , 

      Fk代表第K个阙,是是1~N的随机序列。对于每一个Fk,

      它的条件概率可以写成 ,其中  是属于第K个fern的  C1或C0类  的训练样本数,Nk是与第K个fern对应的叶节点中的训练样本总数。从贝叶斯的角度看,最佳类C1或C0,可以通过解如下方程获得:

       


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值