Regional 2014 - Asia Mudanjiang - F Fiber-optic Network

题目:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=647&page=show_problem&problem=4986

题意:
有一棵N个节点的树,点有点权,第i个节点的权值属于[Li,Ri],并且要求相邻节点的点权是互质的。对于每个节点,计算这个节点在所有合法方案中的点权之和。输出的值对109+7取模。
1N50,1LiRi50000

题解:

将问题转化为计算每个节点i取值j的方案数,可以发现是经典的两遍树DP问题,第一遍算子树满足条件时根取值的方案,第二遍算全树满足条件时某个点取值的方案。

首先进行第一遍树DP,令f[i][j]表示以i为根的子树满足条件且i取值j的方案数,M=max1iNRi,则有

f[u][i]=v is the son of ugcd(i,j)=1f[v][j]=v is the son of ujf[v][j]d|id|jμ(d)=v is the son of ud|iμ(d)d|jf[v][j]=v is the son of ud|iμ(d)g[v][d]=v is the son of uh[v][i]
,其中g[v]相当于是f[v]的狄利克雷卷积,h[v]则相当于是vu产生的贡献,这样做是O(NMlogM)的。

注意到这里h[v][i]在模意义下可能是0,为了避免第二遍树DP涉及除法,需要给u的孩子进行顺序标号,并定义pre[v][i]=v is the son of u,posv<posvh[v][i]suf[v][i]=v is the son of u,posv>posvh[v][i],这样就有pre[v]suf[v]表示不考虑v这棵子树时v父亲的子树合法的方案数。

第二遍树DP主要是将v父亲u的贡献向v产生,不妨用h[v]表示其父亲对其产生的贡献,则实际为把h[u]pre[v]suf[v]当作f[u]而产生的贡献,类似地计算即可,还是O(NMlogM)的。

注意下边界条件然后就没了。

代码:

#include <vector>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 51, maxm = 50001, mod = 1000000007;
int t, n, mx, l[maxn], r[maxn], mu[maxm];
int f[maxn][maxm], g[maxn][maxm], h[maxn][maxm];
int pre[maxn][maxm], suf[maxn][maxm];
vector<int> e[maxn];
inline void mod_inc(int &x, int y)
{
    if((x += y) >= mod)
        x -= mod;
}
inline void mod_dec(int &x, int y)
{
    if((x -= y) < 0)
        x += mod;
}
void pfs(int u)
{
    int sz = e[u].size();
    for(int i = 0; i < sz; ++i)
    {
        int v = e[u][i];
        e[v].erase(remove(e[v].begin(), e[v].end(), u), e[v].end());
        pfs(v);
    }
    memset(f[u] + 1, 0, mx * sizeof(int));
    if(sz > 0)
    {
        { // pre
            int p, v = e[u][0];
            for(int i = l[u]; i <= r[u]; ++i)
                pre[v][i] = 1;
            for(int i = 1; i < sz; ++i)
            {
                p = v, v = e[u][i];
                for(int j = l[u]; j <= r[u]; ++j)
                    pre[v][j] = (LL)pre[p][j] * h[p][j] % mod;
            }
        }
        { // suf
            int p, v = e[u][sz - 1];
            for(int i = l[u]; i <= r[u]; ++i)
                suf[v][i] = 1;
            for(int i = sz - 2; i >= 0; --i)
            {
                p = v, v = e[u][i];
                for(int j = l[u]; j <= r[u]; ++j)
                    suf[v][j] = (LL)suf[p][j] * h[p][j] % mod;
            }
        }
        for(int i = l[u]; i <= r[u]; ++i)
            f[u][i] = (LL)suf[e[u][0]][i] * h[e[u][0]][i] % mod;
    }
    else
        for(int i = l[u]; i <= r[u]; ++i)
            f[u][i] = 1;
    memcpy(g[u] + 1, f[u] + 1, mx * sizeof(int));
    for(int i = 1; i <= mx; ++i)
        for(int j = i + i; j <= mx; j += i)
            mod_inc(g[u][i], g[u][j]);
    memset(h[u] + 1, 0, mx * sizeof(int));
    for(int i = 1; i <= mx; ++i)
        if(mu[i] > 0)
            for(int j = i; j <= mx; j += i)
                mod_inc(h[u][j], g[u][i]);
        else if(mu[i] < 0)
            for(int j = i; j <= mx; j += i)
                mod_dec(h[u][j], g[u][i]);
}
void dfs(int u)
{
    for(int i = l[u]; i <= r[u]; ++i)
        f[u][i] = (LL)f[u][i] * h[u][i] % mod;
    for(vector<int>::iterator it = e[u].begin(); it != e[u].end(); ++it)
    {
        int v = *it;
        memset(g[u] + 1, 0, mx * sizeof(int));
        for(int i = l[u]; i <= r[u]; ++i)
            g[u][i] = (LL)pre[v][i] * suf[v][i] % mod * h[u][i] % mod;
        for(int i = 1; i <= mx; ++i)
            for(int j = i + i; j <= mx; j += i)
                mod_inc(g[u][i], g[u][j]);
        memset(h[v] + 1, 0, mx * sizeof(int));
        for(int i = 1; i <= mx; ++i)
            if(mu[i] > 0)
                for(int j = i; j <= mx; j += i)
                    mod_inc(h[v][j], g[u][i]);
            else if(mu[i] < 0)
                for(int j = i; j <= mx; j += i)
                    mod_dec(h[v][j], g[u][i]);
        dfs(v);
    }
}
int main()
{
    mu[1] = 1;
    for(int i = 1; i < maxm; ++i)
        for(int j = i + i; j < maxm; j += i)
            mu[j] -= mu[i];
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i)
            scanf("%d", l + i);
        mx = 0;
        for(int i = 1; i <= n; ++i)
        {
            scanf("%d", r + i);
            if(mx < r[i])
                mx = r[i];
        }
        for(int i = 1; i <= n; ++i)
            vector<int>().swap(e[i]);
        for(int i = 1, u, v; i < n; ++i)
        {
            scanf("%d%d", &u, &v);
            e[u].push_back(v);
            e[v].push_back(u);
        }
        pfs(1);
        for(int i = l[1]; i <= r[1]; ++i)
            h[1][i] = 1;
        dfs(1);
        for(int i = 1; i <= n; ++i)
        {
            int ans = 0;
            for(int j = l[i]; j <= r[i]; ++j)
                ans = (ans + (LL)j * f[i][j]) % mod;
            printf("%d%c", ans, " \n"[i == n]);
        }
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值