VC中使用OpenCV的Haar特征分类器进行静态图片的人脸及眼睛检测

使用的测试图片来自互联网,如下:
在这里插入图片描述
使用的开发环境是visual studio 2017,opencv的版本是4.2,关于Haar特征分类器的资料网上很多就不描述了,这里只是通过以上搭建的开发环境来实现一个简单的人脸和眼睛的检测功能,参考代码如下:

// TODO: 在此添加控件通知处理程序代码
	Mat image, image_gray;      //定义两个Mat变量,用于存储每一帧的图像

	image = imread("7.jpg");
	Mat dst11 = Mat::zeros(600, 800, CV_8UC3); //我要转化为800*600大小的
	resize(image, dst11, dst11.size());
	imshow("原图", dst11);

	cvtColor(image, image_gray, CV_BGR2GRAY);//转为灰度图
	equalizeHist(image_gray, image_gray);//直方图均衡化,增加对比度方便处理

	CascadeClassifier eye_Classifier;  //载入分类器
	CascadeClassifier face_cascade;    //载入分类器

	if (!eye_Classifier.load("D:\\OpenCV4.2.0\\opencv\\build\\etc\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml"))
	{
		cout << "Load haarcascade_eye_tree_eyeglasses.xml failed!" << endl;
		return ;
	}

	if (!face_cascade.load("D:\\OpenCV4.2.0\\opencv\\build\\etc\\haarcascades\\haarcascade_frontalface_alt.xml"))
	{
		cout << "Load haarcascade_frontalface_alt failed!" << endl;
		return ;
	}

	//vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
	vector<Rect> eyeRect;
	vector<Rect> faceRect;

	

	//检测关于脸部位置
	face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 3, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
	for (size_t i = 0; i < faceRect.size(); i++)
	{
		rectangle(image, faceRect[i], Scalar(0, 0, 255));      //用矩形画出检测到的位置
	}


	//检测关于眼睛部位位置
	eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 6, 0 | CASCADE_SCALE_IMAGE, Size(2, 2));
	for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
	{
		rectangle(image, eyeRect[eyeIdx], Scalar(0, 255, 0));   //用矩形画出检测到的位置
	}
	Mat dst = Mat::zeros(600, 800, CV_8UC3); //我要转化为800*600大小的
	resize(image, dst, dst.size());
	//resize(image, dst,Size(),0.5,0.5);

	imshow("检测结果图", dst);         //显示当前帧
	waitKey(0);

检测的结果如下图所示:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200222150018246.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3NsX2phc29u,size_16,color_FFFFFF,t_70

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值