小白教你连续子数组的最大和

连续子数组的最大和

题目描述:

输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为 O(n).

示例1:

输入:[1,-2,3,10,-4,7,2,-5]
输出:18
说明:输入的数组为{1,-2,3,10,—4,7,2,一5},和最大的子数组为{3,10,一4,7,2},因此输出为该子数组的和 18。

题目链接:

连续子数组的最大和

思路:

这个是一个典型的动态规划问题,设置一个dp数组,数组中存放的均是到当前位置为止的连续子数组的最大和。我们看代码,仔细想想就知道啦。

代码:

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        int [] dp = new int [array.length];
        dp[0] = array[0];//初始化dp数组
        int res = array[0];//返回值
        for (int i = 1; i < array.length; i++) {
            if (dp[i - 1] < 0) {
                dp[i] = array[i];//前一位dp小于0则返回自己本身
            }
            else {
                dp[i] = dp[i - 1] + array[i];//前一位大于0则返回自身加dp前一位
            }
            if (res < dp[i]) {
                res = dp[i];//找最大dp中的值
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是nefu小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值