2021年人工智能领域国内融资频次与金额,已超过去年全年,两项指标双升的势头,也是2018年以来首次出现。
资本市场对这一赛道的兴趣,自2018年以来划出了见顶、俯冲、回升的清晰轨迹。
恰如一条经典的高德纳技术成熟度曲线(Gartner Hype Cycle)。
权威技术咨询机构高德纳,在评价今年人工智能技术趋势时,也给出了相当积极的观点,认为创新正在快速进展(at a rapid pace)。
显然,在经历泡沫生灭后,这个行业正在发生积极而重大的变化。
观察变化的最好场合,莫过于业内重要活动。
12月12日,国内人工智能领域年内最后一场重要活动—WAVE SUMMIT+2021深度学习开发者峰会在上海召开。
深度学习技术及应用国家工程实验室主办的此次活动,由实验室主任、百度CTO王海峰拉开帷幕。
王海峰提出,人工智能产业呈现出“融合创新”和“降低门槛”的特点,深度学习技术,特别是面向工程实现的技术平台发展,正推动人工智能进入工业大生产阶段,“面向技术和产业发展需求的AI大生产平台可以让AI技术以标准化、自动化和模块化的方式输出给千行百业,实现规模化应用,同时以平台为基础促进融合创新、共同发展”。
这是一个相当重要的趋势洞察。
无独有偶,高德纳方面提出的2021四大AI技术趋势,除了监管与合规,其他三项(小样本、敏捷开发、精益利用),均可与王海峰对AI大生产平台“融合创新”、“降低门槛”的展望相互映射,可被视为对同一潮流的不同修辞描述。
如果说2016到2019年,是在供给维度上,对人工智能技术的探索期,那么2021年,则明显呈现出从需求维度上,对人工智能产业生态建设的重视。
事实上,这也是对上一轮人工智能热潮经验教训的重要总结,大量热钱在加速支撑技术演进的同时,并没有帮助初创企业趟出一条商业模式落地的金光大道,创业者们对业务的思考普遍稚嫩,“难以落地”,ROI算不过来,甚至上市出口收窄,让这门已经异化为ToVC的生意急速“入冬”。