AI学者推动人工智能技术在现实生活中的大规模应用

  一般来说,卡内基梅隆大学计算机专业的博士生往往要经过六年的学习才能毕业而杨植麟只用了四年(2015-2019)就从CMU出师一度成为学术圈的风云人物。
  作为一名佼佼的青年AI学者杨植麟确定自己志在推动人工智能技术在实生活中的大规模应用。
  一般来说年轻博士生参与技术落地的途径是进入资金雄厚牛人云集的大厂,在其中得一官半职,比如他的两位博导师Ruslan Salakhutdinov与William Cohen并别在搞学术之余担任苹果 AI 研究负责与谷歌首席科学家。
  但杨植麟认为「科学家加盟大厂」的模式在组织架构上存在局限性并不能令他更深入地参与到AI落地中也无法从根本上解决工业界进行AI落地的瓶颈:
  「我觉得AI行业面临的共同问题是学术与工业界之间的Gap。我们看到老师在工业界有一些title,但其实本质上他们还是在研究工作。基础研究固然重要,但无法打破种壁垒,研究内容与实际落地之间还很多步骤。」
  具体的表现有:一高校教师往往更偏向学术研究与工业界的联系较少也缺少工业界落地的思考与驱动力;二与此同时,虽然许多互联网大厂也招入杰出的科学家去解决技术难题,但它们的首要出发点是赋能业务,而非推动AI落地。
  从大厂运作的组织架构上来说,这些杰出的科学家没有足够的资源或权利去推动产品落地。公司的业务方向会调整,即使科学家有意愿去推动一项产品的落地,成本与代价也会大幅增加,技术的转化率与效率也会受到企业组织架构的影响。
  在杨植麟看来,这是一个非常大的限制,这也造成了在大厂中,许多AI技术的落地周期十分漫长,也不够敏捷。因此,2019年博士毕业时,他拒绝了谷歌、Facebook与华为等大厂的高薪offer,选择了回国创业。
  杨植麟:选择创业,是为了从「组织架构」上解决AI落地难题
  图注:杨植麟与两位博士导师Ruslan Salakhutdinov(最右)、William Cohen(最左)合影「创业的好处是我们可以自己决定公司的组织架。人生苦短,精力有限,优化公司的组织形式可以有效减少中间损耗,缩小技术转化与社会价值之间的距离。」杨植麟谈道。
  杨植麟对AI科技评论回忆,他的本科与博士导师都十分看重技术的实际价值,这给他带来了很大的启发。不同的是,他会更激进地去追求落地的结果,深入业务中进行研究。他的计划是同时进行学术研究与技术落地,并同时取得成果。
  循环智能成立于2016年。也就是说,杨麟从博士二年级开始就一边搞学术研究、一边创业。
  正是有感于「大厂科学家」的尴尬处境,他一直强调「我们需要新的思考」。在循环智能,他不仅是AI技术负责人,还是产品经理,这无疑是一个「范式层面的革新」,是他心中能够有效打破技术与价值之间壁垒的最优途径:
  「一方面,我们会去做基础的研究,如预训练、多模态等;另一方面,我们也要去进行落地。这两个事情可以互相提升与促进。」

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值