P和NP问题
-
多项式时间复杂度
解决问题的所需时间与问题规模之间是多项式的关系,如O( log(n) ) , O( n^3 )。
非多项式关系,如O( n! ) , O( a^n ) , 这类问题计算机往往难以承受。 -
P问题(Polynomial Problem)
在多项式时间内可解的问题。
常见p问题:冒泡排序
p为标题举例 -
NP问题(Non-deterministic Polynomial Problem)
只能通过验证给定的猜测是否正确来求解,即验证所给解是否正确,但无法穷举,又如大合数的质因数分解,没有给定的公式可直接求出一个合数的两个质因数是什么,但是验证两个数是否是质因数却可在多项式时间完成,所以它也是非确定性多项式问题,即NP问题。
常见np问题:TSP -
约化
一元一次方程可约化为一元二次方程,即问题A可转化为问题B(转化所需时间在多项式时间内),易知A不比B难。 -
NPC问题
满足(1)是NP问题;(2)所有的NP问题都可以约化到这个NPC问题;的问题。
意义:只要找到一个NPC问题的多项式解,则所有NP问题都可以求解了。
但是目前NPC问题还没有多项式时间内求解方法。
NPC问题举例:
(1)逻辑电路问题是第一个NPC问题。逻辑电路问题指的是这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。 -
NPH(NP-hard)
满足NPC条件2但不一定满足1的问题,NPH包括NPC。
神经网络激活函数sigmod特点
什么是激活函数?
这个“神经元”是一个以及截距 +1+1 为输入值的运算单元,其输出为 hW,b(x)=f(WTx)=f(∑3i=1Wixi+b)hW,b(x)=f(WTx)=f(∑i=13Wixi+b) ,其中函数 f:R↦Rf:ℜ↦ℜ被称为“激活函数”。在本教程中,我们选用sigmoid函数作为”激活函数” f(⋅)
l
说说神经网络的反向传播
python的基础知识
美团赛码网算法方向题目 2021.5.9
题1
-
问题:
一个n行m列的网格,有k个五元数组(x,y,u,v,w),from(x,y)to(u,v)cost w,其余移动不合法。 -
目标:
输出(1,1)到(n,m)最小cost,若无法完成移动,则输出-1。 -
输入:
n m k (k组移动方式)
xi yi ui vi wi
x<=u and y<=v -
输出:
min cost -
示例输入:
5 4 3
1 1 2 2 1
1 1 5 4 4
2 2 5 4 1 -
示例输出:
2
题2
-
问题:
n个木桩组成围栏,木桩编号i,现需要搬东西跨过围栏,只能越过高度小于h的木桩,且东西宽度为m,故必须连续有m个木桩均小于h才能跨越 -
目标:
若成功跨越,输出第一个木桩编号,若无法完成移动,则输出-1。 -
输入:
n(木桩个数) m(东西宽度) h (可越过高度)
height1 height2 … heightn (木桩高度)
1<=m<=n<=1e5
1<=h,height<=1e9 -
输出:
i or -1 -
示例输入:
5 3 2
3 1 1 1 2 -
示例输出:
2
first_input=input().split(