2022 面试问题

这篇博客讨论了P和NP问题,解释了P问题和NP问题的概念,并介绍了NPC问题及其重要性。此外,还探讨了神经网络中的激活函数sigmoid的特性,并简单概述了神经网络的反向传播过程。同时,博主分享了2021年美团赛码网和便利蜂等公司的算法面试题,涉及路径规划、决策优化和字符串处理等实际问题。
摘要由CSDN通过智能技术生成

P和NP问题

  • 多项式时间复杂度
    解决问题的所需时间与问题规模之间是多项式的关系,如O( log(n) ) , O( n^3 )。
    非多项式关系,如O( n! ) , O( a^n ) , 这类问题计算机往往难以承受。

  • P问题(Polynomial Problem)
    在多项式时间内可解的问题。
    常见p问题:冒泡排序
    p为标题举例

  • NP问题(Non-deterministic Polynomial Problem)
    只能通过验证给定的猜测是否正确来求解,即验证所给解是否正确,但无法穷举,又如大合数的质因数分解,没有给定的公式可直接求出一个合数的两个质因数是什么,但是验证两个数是否是质因数却可在多项式时间完成,所以它也是非确定性多项式问题,即NP问题。
    常见np问题:TSP

  • 约化
    一元一次方程可约化为一元二次方程,即问题A可转化为问题B(转化所需时间在多项式时间内),易知A不比B难

  • NPC问题
    满足(1)是NP问题;(2)所有的NP问题都可以约化到这个NPC问题;的问题。
    意义:只要找到一个NPC问题的多项式解,则所有NP问题都可以求解了。
    但是目前NPC问题还没有多项式时间内求解方法。
    NPC问题举例:
    (1)逻辑电路问题是第一个NPC问题。逻辑电路问题指的是这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。

  • NPH(NP-hard)
    满足NPC条件2但不一定满足1的问题,NPH包括NPC。

神经网络激活函数sigmod特点

什么是激活函数?
单神经元的网络图
这个“神经元”是一个以及截距 +1+1 为输入值的运算单元,其输出为 hW,b(x)=f(WTx)=f(∑3i=1Wixi+b)hW,b(x)=f(WTx)=f(∑i=13Wixi+b) ,其中函数 f:R↦Rf:ℜ↦ℜ被称为“激活函数”。在本教程中,我们选用sigmoid函数作为”激活函数” f(⋅)
l

激活函数介绍原文

说说神经网络的反向传播

python的基础知识

美团赛码网算法方向题目 2021.5.9

题1

  • 问题:
    一个n行m列的网格,有k个五元数组(x,y,u,v,w),from(x,y)to(u,v)cost w,其余移动不合法。

  • 目标:
    输出(1,1)到(n,m)最小cost,若无法完成移动,则输出-1。

  • 输入:
    n m k (k组移动方式)
    xi yi ui vi wi
    x<=u and y<=v

  • 输出:
    min cost

  • 示例输入:
    5 4 3
    1 1 2 2 1
    1 1 5 4 4
    2 2 5 4 1

  • 示例输出:
    2

题2

  • 问题:
    n个木桩组成围栏,木桩编号i,现需要搬东西跨过围栏,只能越过高度小于h的木桩,且东西宽度为m,故必须连续有m个木桩均小于h才能跨越

  • 目标:
    若成功跨越,输出第一个木桩编号,若无法完成移动,则输出-1。

  • 输入:
    n(木桩个数) m(东西宽度) h (可越过高度)
    height1 height2 … heightn (木桩高度)
    1<=m<=n<=1e5
    1<=h,height<=1e9

  • 输出:
    i or -1

  • 示例输入:
    5 3 2
    3 1 1 1 2

  • 示例输出:
    2

first_input=input().split(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值