大致题意:给出一些单词,再给出一个字符串,问单词能满足成为该字符串的子串数目有多少
测试案例:
input:
1
5
she
he
say
shr
her
yasherhs
output:
3
解题思路:这题我直接套了个网上的ac自动机模版,表示过的一脸懵逼
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
class ACAutomaton
{
public:
static const int MAX_N = 10000 * 50 + 5;
//最大结点数:模式串个数 X 模式串最大长度
static const int CLD_NUM = 26;
//从每个结点出发的最多边数,字符集Σ的大小,一般是26个字母
int n; //trie树当前结点总数
int id['z'+1]; //字母x对应的结点编号为id[x]
int fail[MAX_N]; //fail指针
int tag[MAX_N]; //根据题目而不同
int trie[MAX_N][CLD_NUM]; //trie树,也就是goto函数
void init()
{
for (int i = 0; i < CLD_NUM; i++)
id['a'+i] = i;
}
void reset()
{
memset(trie[0], -1, sizeof(trie[0]));
tag[0] = 0;
n = 1;
}
//插入模式串s,构造单词树(keyword tree)
void add(char *s)
{
int p = 0;
while (*s)
{
int i = id[*s];
if ( -1 == trie[p][i] )
{
memset(trie[n], -1, sizeof(trie[n]));
tag[n] = 0;
trie[p][i] = n++;
}
p = trie[p][i];
s++;
}
tag[p]++; //因题而异
}
//构造AC自动机,用BFS来计算每个结点的fail指针,就是构造trie图
void construct()
{
queue<int> Q;
fail[0] = 0;
for (int i = 0; i < CLD_NUM; i++)
{
if (-1 != trie[0][i])
{
fail[trie[0][i]] = 0; //root下的第一层结点的fail指针都指向root
Q.push(trie[0][i]);
}
else
{
trie[0][i] = 0; //这是阶段一中的第2步
}
}
while ( !Q.empty() )
{
int u = Q.front();
Q.pop();
for (int i = 0; i < CLD_NUM; i++)
{
int &v = trie[u][i];
if ( -1 != v )
{
Q.push(v);
fail[v] = trie[fail[u]][i];
//tag[u] += tag[fail[u]]; //因题而异,某些题目中不需要这句话
}
else
{ //当trie[u][i]==-1时,设置其为trie[fail[u]][i],就构造了trie图
v = trie[fail[u]][i];
}
}
}
}
//因题而异
//在目标串t中匹配模式串
int solve(char *t)
{
int q = 0, ret = 0;
while ( *t )
{
q = trie[q][id[*t]];
int u = q;
while ( u != 0 )
{
ret += tag[u];
tag[u] = 0;
u = fail[u];
}
t++;
}
return ret;
}
} ac;
int main()
{
int T;
scanf("%d",&T);
char s[55],s1[1000010];
int n;
//ACAutomaton ac;
ac.init();
while (T--)
{
ac.reset();
scanf("%d",&n);
for (int i=0; i<n; i++)
{
scanf("%s",&s);
ac.add(s);
}
ac.construct();
scanf("%s",&s1);
int ans=ac.solve(s1);
printf("%d\n",ans);
}
return 0;
}