ACM.数学
文章平均质量分 50
slowlight93
这个作者很懒,什么都没留下…
展开
-
uva live 6428 A+B(gcd拓展)
题意: 给三个整数 a, b, S。 每次 1) a += b 或者 2) b += a 问经过若干次操作后,能否得到S 思路: 首先需要得到 ax + by = S 的正整数解系。 然后可以观察并且可以猜想。。。满足gcd(x, y) = 1 的解一定可以凑出S。。 注意long long可能溢出LL a, b, s;LL gcd(LL a, LL b){ return b原创 2015-08-29 21:51:05 · 714 阅读 · 0 评论 -
srm 307 div2 1000(数论,枚举)
题意: 有4正整数因子的自然数被称为preprime数。 求第n个preprime数。 思路: 可以得出结论,仅当某个数是两个素数的乘积或者是某个素数的3次方时为preprime。于是可以用类似素数筛法的方式,得到关于某数素因子数目的表(除自身外)。。 其实还可以更暴力,直接从2开始枚举,然后每个包含其作为因子的数的计数器加1。。。const int MAX = 6000000;int原创 2015-04-08 21:56:42 · 522 阅读 · 0 评论 -
poj 2115 C Looooops(解二元一次不定方程)
题意: 。。。 思路: 和 青蛙的约会 差不多。。 d=B−A,m=2kd = B - A, m = 2^k 方程Cx−my=dCx - my = d 先利用拓展gcd求出 Cx0−my0=g=gcd(C,m)Cx_0-my_0 = g = gcd(C, m) 然后乘上倍数 Cx0∗d/g−my0∗d/g=dCx_0*d/g - my_0*d/g = d 最后求出最小正整数的解原创 2015-03-31 19:44:54 · 922 阅读 · 0 评论 -
poj 1830 开关问题(线性方程组,高斯消元)
题意: n个开关,给出初态和终态。 还有一些关系对(i,j),表示切换第i个开关状态后第j个开关状态也会切换 求有多少种方法从初态到终态。 思路: 详细题解传送 方程怎么列出来的参照上面的题解。。。 这里因为我们用的是异或操作。所以在消元的时候也要通过异或来消。 但是,困扰我很久的是为什么直接异或系数等式仍成立? 下面简单地证明一下: x∗(a xor b)=(x∗a) xor原创 2015-04-01 02:08:47 · 664 阅读 · 0 评论 -
poj 1061 青蛙的约会(gcd拓展,解不定方程)
题意: 。。。 思路: 经典问题。帮助理解gcd拓展,ax+by=gcd(a, b)不定方程,ax+by=c的解系。。 资料1 资料2void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y) { if (!b) {d=a;x=1;y=0;} else{ ex_gcd(b, a%b, d, y, x);y -= a/b*x;原创 2015-03-09 02:23:45 · 556 阅读 · 0 评论 -
neu 1518 New Hanoi Tower(矩阵,递推)
题意: 《具体数学》第一章的练习题中有这个问题。把汉诺塔问题加上了只能从一个盘子向顺时针的下一个盘子移动的限制。 思路: f(n)=把n个盘子移到下一个盘子需要的步数 h(n)=把n个盘子移动下下个盘子需要的步数 求得递推关系式后得到系数矩阵,把(f(n) h(n) 1)放在一个列向量中作为变量矩阵。#include<bits/stdc++.h>using namespace std;#d原创 2015-03-02 21:57:05 · 509 阅读 · 0 评论 -
【training】"叉姐的魔法训练"
这个系列貌似是挂在voj上的,传送 好了, 下面开始魔法训练 @_@..POJ 2443 Set Operation题意:… 思路: 这个枚举就过了。。需要用到位压缩。POJ 3244 Difference between Triplets(数学推导)题意: 给n个(x, y, z)元组 define: d(i, j) = max(xi-xj, yi-yj, zi-zj) - min(xi原创 2015-02-21 19:15:48 · 1709 阅读 · 0 评论 -
codeforces 500D New Year Santa Network (树结构, 组合, 概率(注意精度))
题意:给了一颗树,和它的边权。。然后给若干修改,每次改一条边的权值。。问题是,每次修改后随机找三个不同的点,求 E( d(a, b)+d(a, c)+d(b, c)) 。。。思路:如果是随机选两个点,就好办得多了。我们让1作为root, 如果 (u, v) 修改后变化了 d, 那么它对总权值的贡献是 size(k)*(n-size(k))*d, k = size(u) size(原创 2015-01-17 18:25:02 · 877 阅读 · 0 评论 -
【笔记】放球模型
放球模型描述了对n个球放入m个盒子中的不同方法进行计数的方法。根据 球是否相同,盒子是否相同,盒子是否为空,可以分为8类组合模型。(还可以根据n和m的大小关系进一步分为16种模型)http://baike.baidu.com/view/11781351.htm?fr=aladdinhttp://blog.chinaunix.net/uid-21712186-id-18183原创 2014-12-04 21:48:54 · 1833 阅读 · 0 评论 -
【笔记】第一类Stirling数和第二类Stirling数
从Stirling这个名字会联想到Stirling估计式,Stirling估计式同来估算 n!~ sqrt(2pi*n)[(e/n)^n]--------------------------------------------------------------------------------------------------------------------------第一类St原创 2014-12-04 21:42:57 · 1405 阅读 · 0 评论 -
codeforces 281 div2
E题意:给一个多项式P(x),系数是非负整数。 给出多项式函数图像上两个点 (t, a) (P(t), b) ,求满足条件多项式的个数。神数学题。。http://jeremykun.com/2014/11/18/learning-a-single-variable-polynomial-or-the-power-of-adaptive-queries/http://hzwer.原创 2014-12-04 14:35:55 · 493 阅读 · 0 评论 -
hdu 4336 Card Collector(概率dp, 容斥原理)
题意:相当于盒子里有n个球,每个球被取到的概率为pi, 问取到全部n个球的次数期望是多少?概率dp:题解参见:http://www.cnblogs.com/zhj5chengfeng/archive/2013/03/02/2939601.htmls是用来表示已取到的球的二进制集合,i 是属于集合s的球,k不属于s,s‘是将k加入s得到的集合,即 s’ = s | (1例原创 2014-11-26 01:22:52 · 597 阅读 · 0 评论 -
HDU 5015 233 Matrix(西安网络赛I题, 构造矩阵)
网络赛的时候原创 2014-09-18 15:26:53 · 615 阅读 · 0 评论 -
Codeforces 269 div2
C每一层需要的卡片数原创 2014-09-27 17:58:41 · 522 阅读 · 0 评论 -
uva 11178 morley定理(计算几何基础)
莫雷定理是说:co原创 2014-09-08 16:40:10 · 544 阅读 · 0 评论 -
uva 10828 Back to Kernighan-Ritchie(高斯消元)
高斯校园,gauss-原创 2014-09-05 22:01:38 · 513 阅读 · 0 评论 -
【总结】lucas 定理 + 中国剩余定理
先上学习资料: Lucas’ Theorem 中国剩余定理 Chinese Remainder Theorem 组合数取模 - ACdreamerlucas 定理用来计算组合数模素数。如果素数P可以先确定,则可以O(P)O(P)预处理,每次计算时间复杂度为 O(logPlogN)O(logPlogN)。不预处理的时间复杂度,O(PlogN)O(PlogN)。中国剩余定理用来解模方程组 其原创 2015-09-14 14:58:58 · 2748 阅读 · 0 评论