bzoj1001_平面图中的网络流

    对于普通的网络流来说, dinic或者ISAP的O(n²m )复杂度可能就够了, 但考虑如下问题:
    
    如图所示的一个平面, 源点为左上角, 汇点为右下角, 边数范围到了1000, 这时候O(n²m)的复杂度显然不合适了。 当然, 现在我学会了独特的处理技巧, 专业处理此类平面图问题。
---------------------------------------------------------------------------------------------------------------------------------------------
    我们需要一种特殊的建图方式。 首先我们将整个平面图划分的区域新建成点, 考虑这样的一条边e(a, b), 表示连接a、b且权值为w的边, 这条边将平面分为两部分A、B,那么在新的图中建立一条无向边E(A, B), 边权同样为w(如图1)。 按照这种方法建图, 我们得到了一个新的图。
                                                                                   

                                                                                                  图1
    在得到一个新图后, 在不破坏新图的前提下从源点到汇点连一条虚边, 这条虚边又构造出一个新的平面, 记这个平面为s, 无限大的平面为t, 那么s到t的一条路径即为原图的一个割。 这一点很好证明, 就像一刀切了下去, 原图变成了二分图(如图2)。
                                                 
                                                                                               图2
    这样一来, 求网络流的方法也很方便了, 由最大流-最小割定理可知, 答案就是s到t的最短路径, 这对应的是一个最小割。

---------------------------------------------------------------------------------------------------------------------------------------------

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cstdlib>
#define N 2000000 + 100
#define M 6000000 + 100
#define INF 1000000000

using namespace std;

struct edge
{
    int to, w, next;
}e[M];
struct node
{
    int now, dist;
    node() { }
    node(int x, int y)
    {
        now = x;
        dist = y;
    }
    bool operator < (const node x) const
    {
        return dist > x.dist;
    }
};
int n, m, num, sum, p[N], d[N], flag[N];
void read(int &x)
{
    x = 0;
    char c = getchar();
    while(c < '0' || c > '9') c = getchar();
    while(c >= '0' && c <= '9')
    {
        x = 10*x + c - '0';
        c = getchar();
    }
}
void add(int x, int y, int z)
{
    e[++num].to = y;
    e[num].w = z;
    e[num].next = p[x];
    p[x] = num;
}
void init()
{
    int x, y, z, l, r, po;
    read(n), read(m);
    if (n == 1 || m == 1)
    {
        if (n > m) swap(n, m);
        int ans = INF;
        for (int i = 1; i < m; ++i)
        {
            read(x);
            if (x < ans) ans = x;
        }
        printf("%d\n", ans);
        exit(0);
    }
    l = n - 1, r = m - 1;
    sum = 2 * l * r;
    for (int i = 1; i <= n; ++i)
    for (int j = 1; j < m; ++j)
    {
        read(z);
        po = (i-1)*r + j;
        y = po << 1;
        x = y - 2*r - 1;
        if (i == 1) x = 0;
        else if (i == n) y = sum + 1;
        add(x, y, z);
        add(y, x, z);
    }
    for (int i = 1; i < n; ++i)
    for (int j = 1; j <= m; ++j)
    {
        read(z);
        po = (i-1)*r + j - 1;
        x = po << 1;
        y = x | 1;
        if (j == 1) x = sum + 1;
        else if (j == m) y = 0;
        add(x, y, z);
        add(y, x, z);
    }
    for (int i = 1; i < n; ++i)
    for (int j = 1; j < m; ++j)
    {
        read(z);
        po = (i-1)*r + j;
        y = po << 1;
        x = y - 1;
        add(x, y, z);
        add(y, x, z);
    }
}
void dij_heap()
{
    priority_queue<node>q;
    for (int i = 1; i <= sum; ++i)
    d[i] = INF;
    d[sum+1] = INF;
    q.push(node(0, 0));
    while(!q.empty())
    {
        int x = q.top().now;
        q.pop();
        if (flag[x]) continue;
        for (int i = p[x]; i; i = e[i].next)
        {
            int k = e[i].to;
            if (d[k] > d[x] + e[i].w)
            {
                d[k] = d[x] + e[i].w;
                q.push(node(k, d[k]));
            }
        }
    }
}
void deal()
{
    dij_heap();
    printf("%d\n", d[sum+1]);
}
int main()
{
    init();
    deal();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值