CAD2019安装方法及步骤

本文详细指导如何下载并安装CAD2019,包括解压、管理员权限运行、选择安装路径,以及关键步骤如激活和使用注册机获取激活码。提供完整安装包与注册机链接,确保顺利体验软件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CAD2019安装详细教程来啦,小宝贝们跟着我一步步的来操作吧,注意细节不要有遗漏,答题末尾会给小宝贝们提供CAD2019安装包及注册机,好了废话不多说开始装:
1、将压缩包解压出来打开下面这个文件夹,如图所示:
在这里插入图片描述
2、如下图所示找到Setup,以管理员身份运行在这里插入图片描述
3、点击安装在这里插入图片描述
4、点击我接受然后再点下一步在这里插入图片描述
5、安装路径个人建议不要装在C盘,点击浏览选择自己要装的盘点确定在这里插入图片描述
6、点击安装在这里插入图片描述
7、接下来是安装过程,可能需要一点时间,稍等一下就好了
在这里插入图片描述
8、安装结束后,点击完成在这里插入图片描述
9、根据提示重启一下电脑在这里插入图片描述
10、如下图所示,安装完成后会出现四个图标,可以将其他三个不需要的快捷方式删除就好,不要点卸载在这里插入图片描述
11、重启电脑后打开CAD2019,若是出现如下图弹窗则选择第一项,没有弹窗就不管它在这里插入图片描述
12、如下图所示,启动CAD候点击输入序列号字眼在这里插入图片描述
13、点击我同意在这里插入图片描述
14、点击激活在这里插入图片描述
15、根据图中的序列号和密钥自行手动输入一下,输入好了点下一步在这里插入图片描述
16、为了以防万一,序列号或密钥在某些机台上无法使用,下面我多提供了几组密钥和序列号在这里插入图片描述
17、破解到这一步就暂时不动了,现在我们开始运动注册机先生成好激活码再继续
在这里插入图片描述
18、再解压出来的文件中找到CAD2019注册机双击打开文件夹
在这里插入图片描述
19、如图所示以管理员身份运行,xf-adsk2019_x64在这里插入图片描述
20、打开注册机后点Patch,弹出窗口点确定在这里插入图片描述
21、将CAD的申请码复制在这里插入图片描述
22、将复制好的申请码粘贴在Request文本框中,点击Generate在这里插入图片描述
23、得到下面的一串激活码,将激活码复制在这里插入图片描述
24、复制好的激活码粘贴到下图所以提供的激活码框中,点下一步在这里插入图片描述
25、到这一步我们就算是破解成功了,可以放心使用了,激活码要是一次不成功可以多试几次在这里插入图片描述
26、解压文件最好关闭防火墙关闭病毒检测退出安全软件,不然容易被系统直接删除文件,破解过程需要断网的状态下进行。下面提供CAD2019安装包内附注册机,下载好解压后直接可以按照上面步骤安装:https://pan.baidu.com/s/1em9rhV0VEgd661-ERBdsyg 提取码:8888
在这里插入图片描述

### DDIM采样器介绍及应用 #### 工作原理 DDIM(Denoising Diffusion Implicit Models)是一种改进版的扩散模型,相较于传统的DDPM(Denoising Diffusion Probabilistic Models),具备更优的样本生成质量和一致性特性[^1]。在DDIM中,通过调整噪声逐步去除的过程,可以控制生成过程中的不确定性程度。这种灵活性使得DDIM能够在保持高质量的同时显著减少所需的迭代次数。 对于具体的实现细节而言,DDIM采用了一种非马尔科夫式的去噪步骤序列化策略,即允许相邻时间步之间的依赖关系存在,从而实现了更加平滑且可控的结果转换路径[^4]。这不仅提高了最终输出的质量,还赋予了模型更强的表现力,尤其是在处理复杂结构的数据集上表现尤为突出。 #### 实现方式 为了便于理解和实际部署,下面给出一段基于Python语言编写的简化版本DDIM采样逻辑: ```python import torch from diffusers import DDIMScheduler, UNet2DModel def ddim_sampling(model: UNet2DModel, scheduler: DDIMScheduler, latent_variable, num_inference_steps=50): """ 使用给定的UNet模型和调度程序执行一次DDIM抽样 参数: model (UNet2DModel): 训练好的U-Net网络实例. scheduler (DDIMScheduler): 调度算法对象. latent_variable : 初始潜在向量. num_inference_steps (int): 推理过程中使用的总步数,默认为50. 返回值: List[Tensor]: 各阶段产生的中间状态列表. """ images = [] with torch.no_grad(): for t in reversed(range(num_inference_steps)): # 获取当前时刻t对应的beta_t和其他必要参数 timestep = torch.tensor([t]*latent_variable.shape[0]).to(latent_variable.device) # 预测噪音并计算预测后的x_0̂ noise_pred = model(latent_variable, timestep).sample # 更新潜变量 prev_latents = scheduler.step(noise_pred, t, latent_variable).prev_sample # 存储每一步骤得到的新图象 images.append(prev_latents.clone()) latent_variable = prev_latents return images[-1] ``` 上述代码片段展示了如何利用预训练过的`UNet2DModel`配合特定配置下的`DDIMScheduler`来完成一轮完整的图像合成任务。值得注意的是,这里仅提供了一个高度抽象化的接口定义;真实环境中还需要考虑更多因素如设备兼容性、数据预处理等。 #### 应用场景 DDIM因其独特的优势被广泛应用于各类视觉创作领域,特别是在需要高效稳定地生成高分辨率图片的任务里表现出色。例如,在艺术风格迁移项目中,开发者们往往倾向于选用DDIM作为默认选项之一,因为其能够有效降低计算成本同时维持良好的画质水平[^2]。此外,借助于内置的一致性质,用户还可以轻松实施诸如跨域翻译或是条件引导等功能扩展,进一步拓宽了技术的应用边界。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值