备战秋招60天算法挑战,Day35

题目链接: https://leetcode.cn/problems/longest-common-subsequence/

视频题解: https://www.bilibili.com/video/BV1RovheZEHf/

LeetCode 1143. 最长公共子序列

题目描述

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

举个例子:

输入: text1 = "abcde", text2 = "ace" 
输出: 3  
解释: 最长公共子序列是 "ace" ,它的长度为 3 。

视频题解

最长公共子序列

思路来源

思路来源

知识回顾

动态规划是一种通过将原问题分解为子问题来求解复杂问题的算法思想。它通常用于求解最优化问题,例如最长公共子序列、背包问题等。动态规划的核心思想是将原问题分解为若干个子问题,通过求解子问题的最优解推导出原问题的最优解。可以通过两点来判断一个问题能不能通过动态规划来解,一是该问题是否存在递归结构,二是对应的子问题能否记忆化。动态规划可以通过带备忘录的自上而下的递归自下而上的迭代来分别实现。由于递归需要用到栈来实现,一些语言对递归的深度是有限制的,所以自下而上的迭代是动态规划的最佳实现方式

思路解析

首先定义dp[i][j]text1[0, i)区间和text2[0, j)区间的最长公共子序列。[0, i)区间的长度为i[0, j)区间的长度为j

接下来我们来看两种情况下的子问题分解

  1. text1[i-1] == text2[j-1],这个时候text1[0, i)区间和text2[0, j)区间上的最长公共子序列就变成了 text1[0, i-1)区间和text2[0, j-1)区间上的最长公共子序列加1 。即dp[i][j] = dp[i-1][j-1] + 1

  1. text1[i-1] != text2[j-1],这个时候text1[0, i)区间和text2[0, j)区间上的最长公共子序列就变成了 text1[0, i-1)区间和text2[0, j)区间上的最长公共子序列 以及 text1[0, i)区间和text2[0, j-1)区间上的最长公共子序列 中比较长的一个。即dp[i][j] = max(dp[i-1][j], dp[i][j-1])

通过上面分析知dp[i][j]依赖子问题dp[i-1][j-1]dp[i][j-1]dp[i-1][j]的结果,同样的dp[i][j-1]依赖子问题dp[i-1][j-2]dp[i][j-2]dp[i-1][j-1]的结果,这里会涉及到重复子问题dp[i-1][j-1]。该问题存在递归结构,并且存在大量子问题可以记忆化保存,所以可以通过动态规划来实现。

本题是经典的二维动态规划问题,要找到解决动态规划问题的两个突破点:推导出状态转移公式边界条件处理

根据上面的分析状态转移公式为:

对于边界条件,很明显dp[i][0] = 0dp[j][0] = 0

text1 = "abcde"text2 = "ace"的推导过程如下图:

最终dp[5][3] = 3,最长公共子序列的长度为3

C++代码

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int text1_len = text1.length();
        int text2_len = text2.length();
        //定义二维dp数组,并初始化,dp[i][0]=0 dp[0][j]=0
        vector<vector<int>> dp(text1_len + 1, vector<int>(text2_len + 1, 0));

        for (int i = 0; i < text1_len; ++i) {
            for (int j = 0; j < text2_len; ++j) {
                //text1[i] == text2[j]
                if (text1[i] == text2[j]) {
                    //状态转移公式
                    dp[i+1][j+1] = dp[i][j] + 1;
                 //text1[i] != text2[j]
                } else {
                    //状态转移公式
                    dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1]);
                }
            }
        }  
        return dp[text1_len][text2_len];
    }
};

java代码

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int text1_len = text1.length();
        int text2_len = text2.length();
        // 定义二维dp数组,并初始化,dp[i][0]=0 dp[0][j]=0
        int[][] dp = new int[text1_len + 1][text2_len + 1];

        for (int i = 0; i < text1_len; ++i) {
            for (int j = 0; j < text2_len; ++j) {
                // text1[i] == text2[j]
                if (text1.charAt(i) == text2.charAt(j)) {
                    // 状态转移公式
                    dp[i+1][j+1] = dp[i][j] + 1;
                // text1[i] != text2[j]
                } else {
                    // 状态转移公式
                    dp[i+1][j+1] = Math.max(dp[i+1][j], dp[i][j+1]);
                }
            }
        }
        return dp[text1_len][text2_len];
    }
}

python代码

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        text1_len = len(text1)
        text2_len = len(text2)
        # 定义二维dp数组,并初始化,dp[i][0]=0 dp[0][j]=0
        dp = [[0] * (text2_len + 1) for _ in range(text1_len + 1)]

        for i in range(text1_len):
            for j in range(text2_len):
                # text1[i] == text2[j]
                if text1[i] == text2[j]:
                    # 状态转移公式
                    dp[i+1][j+1] = dp[i][j] + 1
                # text1[i] != text2[j]
                else:
                    # 状态转移公式
                    dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])

        return dp[text1_len][text2_len]

复杂度分析

时间复杂度: O(mn) ,其中mtext1的长度,ntext2的长度。

空间复杂度: O(mn) ,其中mtext1的长度,ntext2的长度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值