//课程设计哈夫曼树文件的压缩
#include<iostream>
#include<fstream>
#include<string>
#include<iomanip>
#include"stdio.h"
using namespace std;
string remfile[6000];//存放原文件字符的数组;
int remcount=0;//记录元素个数;
float bitecount=0;//记录二进制码的个数;
/****************************************************************/
struct huffchar{//存放读入字符的类;
int count;//字符出现的个数;
char data;//字符;
};
int count=1;//记录huff数组中字符实际出现的个数;
huffchar huff[1000];//类的对象;
/****************************************************************/
/*文件读入部分和统计字符出现的频率*/
bool char_judge(char c)//判断字符出现的函数;
{
for(int i=1;i<=count;i++)
if(huff[i].data==c){huff[i].count++;return true;}//如果出现过,出现的频数加1;
return false;
}
void char_add(char c)//添加新出现的字符;
{
huff[count].data=c;
huff[count++].count++;//个数增加,
}
//文件的读取
void read_file_count()
{
char c;
ifstream infile;
infile.open("huffman.txt");//打开huffman.txt文件;
if(!infile)//检查文件是否打开。
{
cerr<<"不能打开 huffman.txt文件";//输出文件未打开的标志。
exit(0);
}
cout<<"读入的文件中的内容为:"<<endl;
while((c=infile.get())!=EOF)
{
remfile[++remcount]=c;
if(!char_judge(c))
char_add(c);
}
cout<<endl;
}
/******************文件读入和统计字符出现频率部分结束**************/
/******************************************************************/
/******************构造huffman树程序部分***************************/
struct huff_tree{//huffman树结点定义;
int parent;
int lchild;
int rchild;
int weight;
};
int sum;//huffman树中结点的个数;
huff_tree huffman[1000];
void creathuffman()//构造huffman树的函数
{
int min1,min2;//指示权值最小;
int loc1,loc2;//指向权值最小的两个数的位置;
for(int i=1;i<=sum;i++)
{ //对huffman树的结点进行初始化;
huffman[i].parent=0;
huffman[i].lchild=0;
huffman[i].rchild=0;
huffman[i].weight=0;
}
for(int ii=1;ii<count;ii++)//将权值赋给huffman[].weight;
huffman[ii].weight=huff[ii].count;
sum=2*count-3;
for(int j=count;j<=sum;j++)
{
loc1=loc2=0;//权值最小的
min1=min2=20000;
for(int k=1;k<=j-1;k++)//求权值最小的两个地址;
if(huffman[k].parent==0)
if(huffman[k].weight<=min1)
{
min2=min1;min1=huffman[k].weight;
loc2=loc1;loc1=k;
}
else
if(huffman[k].weight<=min2)
{min2=huffman[k].weight;loc2=k;}
将求出的两个权值最小的结点合并为新的结点,并将新的结点存入数组中
huffman[loc1].parent=j;
huffman[loc2].parent=j;
huffman[j].lchild=loc1;
huffman[j].rchild=loc2;
huffman[j].weight=huffman[loc1].weight+huffman[loc2].weight;
}
}
/*******************************构造huffman树的程序部分结束********************************/
/*************************************huffman编码开始**************************************/
struct huffcode{//译码结构体
string bits[100];//存放解码;
int start;//
int count;
string c;//存放字符;
};
huffcode hcode[100];
void huffmancode()//编码函数
{
int rem,p;int count1=0;
for(int y=1;y<=count;y++)
{//编码部分;
rem=y;
hcode[y].start=sum;
hcode[y].c=huff[y].data;
p=huffman[y].parent;
while(p!=0)
{
if(huffman[p].lchild==rem)hcode[y].bits[++count1]='0';
else hcode[y].bits[++count1]='1';
rem=p;
p=huffman[p].parent;
}
hcode[y].count=count1;
count1=0;
}
for(int t=1;t<=count;t++)//输出所编的码;
{
cout<<"字符"<<hcode[t].c<<";编码: ";
int r=hcode[t].count;
while(r)
cout<<hcode[t].bits[r--];
cout<<endl;
}
}
/************************************************************************************/
string str;
void code_huffman_file()
{
ofstream fp;
cout<<"请输入文件名"<<endl<<"例如:huffman1.txt"<<endl;
cout<<"该文件用来存放编码后的文件即压缩文件"<<endl;
cin>>str;
fp.open(str.c_str());
if(!fp)//检查文件是否打开。
{
cerr<<"不能打开 "<<str<<"文件"<<endl;//输出文件未打开的标志。
exit(0);
}
for(int j=1;j<=remcount;j++)
{
for(int i=1;i<=count;i++)
if(remfile[j]==hcode[i].c)
{
for(int k=hcode[i].count;k>0;k--)
{fp<<hcode[i].bits[k];bitecount++;}
break;
}
}
fp.close();
}
/****************************编码并将编码存入文件部分结束*************************/
/
void code_file_out()//将编码过的文件恢复;
{
ifstream fp1;//编码文件;
ofstream fp2;//解压缩文件;
fp1.open(str.c_str());
if(!fp1)//检查文件是否打开。
{
cerr<<"不能打开 "<<str<<"文件"<<endl;//输出文件未打开的标志。
exit(0);
}
char inchar;
cout<<"请输入文件名"<<endl<<"例如:huffman2.txt"<<endl;
cout<<"该文件存放解压缩后的文件"<<endl;
string s1;
cin>>s1;
fp2.open(s1.c_str());
if(!fp2)//检查文件是否打开。
{
cerr<<"不能打开"<<s1<<"文件"<<endl;//输出文件未打开的标志。
exit(0);
}
for(int ptr=sum;!fp1.eof();)//将编码转为字符输入的到文件中;
{
fp1>>inchar;
if(inchar=='1')ptr=huffman[ptr].rchild;//查找相应编码对应huffman树中的位置,
else ptr=huffman[ptr].lchild;
if(huffman[ptr].lchild==0&&huffman[ptr].lchild==0)//判断是否为叶子结点;
{fp2<<huff[ptr].data;ptr=sum;}//是叶子结点,将该结点的对应字符输入到文件中;
}
cout<<endl<<" 请检查原文件"<<"huffman.txt"<<"与解压缩文件"<<s1<<endl<<endl<<endl;
cout<<"*********************************请检查*****************************"<<endl;
}
/*************************解压缩文件部分结束**************************************/
void evaluating()
{
float y1;
y1=bitecount/8/remcount*100;
cout<<"压缩比例是:"<<y1<<"%"<<endl;
}
void main()
{
cout<<" *******************************************************"<<endl;
cout<<" * 数据结构课程设计 *"<<endl;
cout<<" * Huffman树文件压缩 *"<<endl;
cout<<" * **** *"<<endl;
cout<<" * ********* *"<<endl;
cout<<" *******************************************************"<<endl;
system("pause");
read_file_count();
creathuffman();
huffmancode();
code_huffman_file();
code_file_out();
evaluating();
cout<<endl<<endl<<" 文件的压缩与解压缩完成"<<endl;
system("pause");
}
关于Huffman 压缩
0.原理
Huffman编码是一种可变长编码方式,是由美国数学家David Huffman创立的,是二叉树的一种特殊转化形式。编码的原理是:将使用次数多的代码转换成长度较短的代码,而使用次数少的可以使用较长的编码,并且保持编码的唯一可解性。Huffman算法的最根本的原则是:累计的(字符的统计数字*字符的编码长度)为最小,也就是权值(字符的统计数字*字符的编码长度)的和最小。
1.Huffman树
Huffman树是二叉树的一种特殊转化形式。以下是构件Huffman树的例子:
比如有以下数据, ABFACGCAHGBBAACECDFGFAAEABBB
先进行统计A(8) B(6) C(4) D(1) E(2) F(3) G(3) H(1) 括号里面的是统计次数
生成Huffman树:每次取最小的那两个节点(node)合并成一个节点(node),并且将累计数值相加作为新的接点的累计数值,最顶层的是根节点(root) 注:列表中最小节点的是指包括合并了的节点在内的所有节点,已经合并的节点不在列表中
运算的过程如下:
1:D+H(2)
2:DE+H(4)
3:F+G(6)
4:C+DEH(8)
5:B+FG(12)
6:A+CDEH(16)
7:ACDEH+BFG(28)
那么转化为Huffman树就是
Huffman树 层数
Root
┌┴┐
ACDEH BFG 1
┌┴┐┌┴┐
CDEH A B FG 2
┌┴┐ ┌┴┐
DEH C F G 3
┌┴┐
DH E 4
┌┴┐
D H 5
取左面是1 右面是0 则有。
注:层数就是位数或者说是代码长度,权值=代码长度*该字的统计次数。
代码 位数 权值
A = 10 2 16
B = 01 2 12
C = 110 3 12
D = 11111 5 5
E = 1110 4 8
F = 001 3 9
G = 000 2 6
H = 11110 5 5
可以看出Huffman代码是唯一可解的(uniquely decodable),如果你读到110就一定是C ,不会有任何一个编码是以110开始的。
如果不使用Huffman算法,而使用普通的编码,结果是什么呢?
Huffman树 层数
Root
┌┴┐
ABCD EFGH 1
┌┴┐ ┌┴┐
AB CD EF GH 2
┌┴┐┌┴┐┌┴┐ ┌┴┐
A B C D E F G H 3
取左面是1 右面是0 则有
代码 位数 权值
A = 111 3 24
B = 110 3 18
C = 101 3 12
D = 100 3 3
E = 011 3 6
F = 010 3 9
G = 001 3 9
H = 000 3 3
利用Huffman编码得到的权值累计是 73,如果利用普通定长编码的话,则要用84字符长度。从这个比较,你可以看出,Huffman是怎么进行压缩的。
2.编码和解码
编码:将ABCDEFGH用Huffman树产生的编码对应着写到文件中,并且保留原始的Huffman树,主要是编码段的信息。一般要编码256个元素的话需要511个单位来储存Huffman树,每个Huffman树都必须有以下的结构:code,char,left,right,probability(出现次数),通常情况是利用一个数组结构。因为在解码的时候只需要用到code,所以只需要记录每个元素的编码就可以了。
解码:利用文件中保存的Huffman编码,一一对应,解读编码,把可变长编码转换为定长编码。
3.发展
由于Huffman编码需要扫描两次,第一次是统计数字,第二次是编码写文件,大大影响了速度,因此有人发明了enhanced Huffman aglorithm。这种算法只扫描一遍文件,动态产生Huffman树,即每读n个字节就重新编码一次Huffman树,以达到提高速度的目的。在解码的过程中使用动态还原技术。