erlang-leetcode(解题系列)2139. 得到目标值的最少行动次数(中等)

得到目标值的最少行动次数-原题

你正在玩一个整数游戏。从整数 1 开始,期望得到整数 target 。

在一次行动中,你可以做下述两种操作之一:

递增,将当前整数的值加 1(即, x = x + 1)。
加倍,使当前整数的值翻倍(即,x = 2 * x)。
在整个游戏过程中,你可以使用 递增 操作 任意 次数。但是只能使用 加倍 操作 至多 maxDoubles 次。

给你两个整数 target 和 maxDoubles ,返回从 1 开始得到 target 需要的最少行动次数。

示例 1:

输入:target = 5, maxDoubles = 0
输出:4
解释:一直递增 1 直到得到 target 。
示例 2:

输入:target = 19, maxDoubles = 2
输出:7
解释:最初,x = 1 。
递增 3 次,x = 4 。
加倍 1 次,x = 8 。
递增 1 次,x = 9 。
加倍 1 次,x = 18 。
递增 1 次,x = 19 。
示例 3:

输入:target = 10, maxDoubles = 4
输出:4
解释:
最初,x = 1 。 
递增 1 次,x = 2 。 
加倍 1 次,x = 4 。 
递增 1 次,x = 5 。 
加倍 1 次,x = 10 。 

提示:

1 <= target <= 109
0 <= maxDoubles <= 100

-spec min_moves(Target :: integer(), MaxDoubles :: integer()) -> integer().
min_moves(Target, MaxDoubles) ->
    do_min_moves(Target, MaxDoubles, 0)
  .
do_min_moves(1, MaxDoubles, Ans) ->
    Ans;
do_min_moves(Target, 0, Ans) ->
    Target + Ans -1;
do_min_moves(Target, MaxDoubles, Ans) ->
    do_min_moves(Target div 2, MaxDoubles - 1, Ans + 1 + Target rem 2).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值