你正在玩一个整数游戏。从整数 1 开始,期望得到整数 target 。
在一次行动中,你可以做下述两种操作之一:
递增,将当前整数的值加 1(即, x = x + 1)。
加倍,使当前整数的值翻倍(即,x = 2 * x)。
在整个游戏过程中,你可以使用 递增 操作 任意 次数。但是只能使用 加倍 操作 至多 maxDoubles 次。
给你两个整数 target 和 maxDoubles ,返回从 1 开始得到 target 需要的最少行动次数。
示例 1:
输入:target = 5, maxDoubles = 0
输出:4
解释:一直递增 1 直到得到 target 。
示例 2:
输入:target = 19, maxDoubles = 2
输出:7
解释:最初,x = 1 。
递增 3 次,x = 4 。
加倍 1 次,x = 8 。
递增 1 次,x = 9 。
加倍 1 次,x = 18 。
递增 1 次,x = 19 。
示例 3:
输入:target = 10, maxDoubles = 4
输出:4
解释:
最初,x = 1 。
递增 1 次,x = 2 。
加倍 1 次,x = 4 。
递增 1 次,x = 5 。
加倍 1 次,x = 10 。
提示:
1 <= target <= 109
0 <= maxDoubles <= 100
-spec min_moves(Target :: integer(), MaxDoubles :: integer()) -> integer().
min_moves(Target, MaxDoubles) ->
do_min_moves(Target, MaxDoubles, 0)
.
do_min_moves(1, MaxDoubles, Ans) ->
Ans;
do_min_moves(Target, 0, Ans) ->
Target + Ans -1;
do_min_moves(Target, MaxDoubles, Ans) ->
do_min_moves(Target div 2, MaxDoubles - 1, Ans + 1 + Target rem 2).