POJ1060 ZOJ1026 Modular multiplication of polynomials

//4_3_2:	Modular multiplication of polynomials 多项式相乘再取模 POJ1060 ZOJ1026
//f(x) * g(x) % h(x)
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int compare(int mul[],int mul_num,int h[],int h_num)
{
	if(mul_num > h_num)	return 1;
	if(h_num > mul_num)	return -1;
	for(int i = mul_num - 1;i >= 0;i --)
	{
		if(mul[i] > h[i])		return 1;
		else if(h[i] > mul[i])	return -1;
	}
	return 0;
}
int main()
{
	int i,j,n,f_num,g_num,h_num,mul_num;
	int f[1005],g[1005],h[1005],mul[2010];
	scanf("%d",&n);
	while(n--)
	{
		memset(mul,0,sizeof(mul));
		scanf("%d",&f_num);
		for(i = f_num - 1;i >= 0;i --)	scanf("%d",&f[i]);
		scanf("%d",&g_num);
		for(i = g_num - 1;i >= 0;i --)	scanf("%d",&g[i]);
		scanf("%d",&h_num);
		for(i = h_num - 1;i >= 0;i --)	scanf("%d",&h[i]);
		for(i = f_num - 1;i >= 0;i --)
			for(j = g_num - 1;j >= 0;j --)
				mul[i + j] ^= (f[i] & g[j]);
		mul_num = f_num + g_num - 1;
		while(compare(mul,mul_num,h,h_num) >= 0)
		{
			int dis = mul_num - h_num;
			for(i = 0;i < h_num;i ++)	mul[i + dis] ^= h[i];
			while(mul_num && !mul[mul_num - 1])	mul_num --;
		}//mul_num不能为0,最少为1,就算余数是0,正好整除,也要输出余数0
		if(mul_num == 0)	mul_num = 1;
		cout << mul_num << ' ';
		for(i = mul_num - 1;i > 0;i --)
			cout << mul[i] << ' ';
		cout << mul[0] << endl;
	}
	return 0;
}
/*测试结果:通过POJ1060 ZOJ1026检测
2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
8 1 1 0 0 0 0 0 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0
请按任意键继续. . .
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值