链接:
https://leetcode.com/problems/divide-two-integers/
大意:
给定两个整数dividend和divisor,要求出divideng/divisor的结果(int型整数)。要求:不能用乘法、除法和取余运算。另:结果可能会溢出,若溢出,则返回Integer.MAX_VALUE
思路:
由于不能用乘除法和取余,所以可以采用加减法结合二分法以及递归来解决。
首先考虑结果不溢出的情况:对于一个例子:dividend=10,divisor=3 。其中10可以表示为:10 = 6 + 3 + 1。也就是用递归来说就是,初始化sum=1,另一个变量tmpd2 = 3;当tmpd2 + tmpd2 <= dividend时,sum += sum 并且 tmpd2 += tmpd2;之后继续比较。直到tmpd2+tmpd2>dividend。此时再计算dividend-tmpd2可以由多少个divisor计算(也就是递归)。最后跳出递归的条件是 如果 dividend < divisor 则返回0
现在考虑符号问题。在不溢出的情况下,我们只需要知道两个数的最终结果是正还是负即可,至于传入上面方法的两个数,一律传正数(负数即取绝对值)进去。最后根据之前得到的两个数的结果是正or负,把最后返回的值调整一下即可
现在考虑溢出问题。若一个数为Integer.MIN_VALUE,则把它取绝对值后传入上面的方法会得到0,因为Integer.MAX_VALUE = 2^32 - 1,而Integer.MIN_VALUE = -2^32。所以不能单纯地取绝对值,而是应该将int转为long后再取反再赋给long型变量。因此方法中的两个参数都应该是long型,返回值也应该为long型
最后结合所有情况,如果经过分析可以得知最终的结果是个整数,且由方法返回得到的数result大于Integer.MAX_VALUE,则返回Integer.MAX_VALUE;否则返回result 如果经过分析得知最终的结果是个负数,则直接返回-result即可(因为若为最终结果为负数,则最小也就是Integer.MIN_VALUE(当dividend为Integer.MIN_VALUE且divisor为1时))
代码:
class Solution {
public int divide(int dividend, int divisor) {
boolean positive1 = true, positive2 = true; // 记录第一个数和第二个数是否为正
long d1 = dividend, d2 = divisor;
if (dividend < 0) {
positive1 = false;
if (dividend == Integer.MIN_VALUE)
d1 = (long)Integer.MAX_VALUE + 1;
else
d1 = -dividend;
}
if (divisor < 0) {
positive2 = false;
if (divisor == Integer.MIN_VALUE)
d2 = (long)Integer.MAX_VALUE + 1;
else
d2 = -divisor;
}
long result = getResult(d1, d2);
// 结果为正数的情况
if (positive1 && positive2 || !positive1 && !positive2)
if (result > Integer.MAX_VALUE)
return Integer.MAX_VALUE;
else
return (int)result;
// 结果为负数的情况
else
return (int)-result;
}
// 采用二分法+递归
public long getResult(long d1, long d2) {
if (d1 < d2)
return 0;
long sum = 1, tmpd2 = d2;
while (tmpd2 + tmpd2 <= d1) {
sum += sum;
tmpd2 += tmpd2;
}
return sum + getResult(d1 - tmpd2, d2);
}
}
结果:
结论:
主要思路是二分法+递归。另外需要解决的问题就是int型溢出