多分类和二分类的关系

1 VS Rest, 1 VS 1, DAG法

1 VS Rest : 训练K个分类器,每个分类器有1类做正例其余K-1类做负例;预测阶段,取正例概率最大的那个分类器的结果即可;优点:分类器就K个,个数少;缺点:正负样本数量不平衡,影响分类效果。

1 VS 1 : 训练K(K-1)/2个分类器,每个分类器有1类做正例有1类做负例;预测阶段,给分成正例的类别做投票,票数最多的类别获胜;优点:正负样本个数平衡;缺点:训练分类器个数多,测试阶段分类次数多,存在拒分(最多票数的有几个类别的投票数一样)和误判(样本本来不属于A类也不属于B类,但是在A-B分类时,必须投票给其中一类)的问题;

DAG法:建立层级DAG结构(注意不是树形结构,节点有复用),最上层一个节点是K个类,挑一个1V1的分类器进行二分类,分到哪一类就排除另一类,下一层节点只包含剩下的K-1类;优点:正负样本个数平衡,预测阶段分类次数少;缺点:对误差更敏感(一次分错排除了该类,后面就再没有机会分到该类了)

 

Softmax回归 VS 多个LR回归:

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?

在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

 

Multi-class:以上就是;即一个样本只能属于多个类别里的某一个类别;

Multi-label:把label翻译成"标签",好理解,一个样本可以打上0~N个标签;损失函数是多个二分类器的损失函数之和(也就是各个似然函数的乘积取log再取负)

 

softmax求导:

https://blog.csdn.net/abeldeng/article/details/79092962

softmax之前一层的某个节点x[k], 导数和softmax之后一层的所有节点有关!(分为i=j和i<>j两种情况讨论,分别求导,最后再全加起来)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值