Speculative Decoding多篇主流论文的总结

现象:

1. 有些文本词语,小模型也是有推理正确的能力的。不需要大模型这样能力强的模型。

2. decode阶段是memory-bound,不是计算密集,远远没有打满GPU算力。

基本原理

先用小且快的draft模型,生成几个tokens。再用大而慢的模型,将这些input+output tokens批量输入,一次forward得到每个token的下一个token,只保留前面和draft结果完全相同的部分,不同的部分扔弃。

SpecInfer

痛点:强调了传统decode方法每次都要读1遍模型参数的memory-bound。

1个小模型每次采样几个tokens,OR,多个小模型每个采样1个序列;

生成多个候选序列的目的:增大命中几率。

将多个候选序列,合并成1棵树的目的:避免公共前缀tokens的KV cache的重复计算,减少显存占用。

使用Tree-attention,把整棵树的tokens打包至1个batch,输入大模型进行1个forward推理。

限制每个节点的采样tokens不能太多。如下,<2, 2, 1>限制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值