时间序列聚类与图聚类优化:提升数据分析效率与准确性
1. 时间序列聚类在市场篮分析中的应用
1.1 项目背景与目标
在市场竞争激烈的环境下,某公司迫切需要更严格地管理生产、库存控制和分销。为了更好地了解客户需求,传统的客户问卷调查成本高、耗时长且执行难度大。因此,项目旨在分析销售交易数据,以发现客户的购买行为。
1.2 数据准备
该公司拥有过去三年约56000条销售记录,涉及700多种产品,销售交易数据集包含十多个与交易相关的变量。为了进行时间序列聚类,仅选取每个交易的客户编号、产品部件编号、销售日期和订购数量作为分析数据集。
数据准备步骤如下:
1. 识别并移除少量无效记录(主要是取消的订单)。
2. 按客户编号、产品部件编号和销售日期对数据进行排序。
3. 按月汇总记录,并计算每个月的总订购数量。
4. 将数据重新格式化为每个月标识符作为一列,记录该月的销售数量。最终得到约2000条记录,涵盖36个月度时间点。
由于数据仅涵盖36个时间点,数据规模较小,可以直接对时间序列数据进行聚类。同时,为了避免聚类算法受实际购买数量的影响,对每个时间序列数据记录进行归一化处理,使其在聚类时具有相同的权重。
1.3 聚类结果与分析
使用K-Means聚类算法生成不同簇数(K = 35、K = 40、K = 45和K = 50)的聚类解决方案。基于轮廓系数,选择具有45个簇的解决方案进行进一步分析。
在生成的45个簇中,发现了许多有趣的互补部件集合,这些信息有助于销售员工制定定价、销售和营销策略。以供应给D公司的部件D -
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



