28、时间序列聚类与图聚类优化:提升数据分析效率与准确性

时间序列聚类与图聚类优化:提升数据分析效率与准确性

1. 时间序列聚类在市场篮分析中的应用

1.1 项目背景与目标

在市场竞争激烈的环境下,某公司迫切需要更严格地管理生产、库存控制和分销。为了更好地了解客户需求,传统的客户问卷调查成本高、耗时长且执行难度大。因此,项目旨在分析销售交易数据,以发现客户的购买行为。

1.2 数据准备

该公司拥有过去三年约56000条销售记录,涉及700多种产品,销售交易数据集包含十多个与交易相关的变量。为了进行时间序列聚类,仅选取每个交易的客户编号、产品部件编号、销售日期和订购数量作为分析数据集。

数据准备步骤如下:
1. 识别并移除少量无效记录(主要是取消的订单)。
2. 按客户编号、产品部件编号和销售日期对数据进行排序。
3. 按月汇总记录,并计算每个月的总订购数量。
4. 将数据重新格式化为每个月标识符作为一列,记录该月的销售数量。最终得到约2000条记录,涵盖36个月度时间点。

由于数据仅涵盖36个时间点,数据规模较小,可以直接对时间序列数据进行聚类。同时,为了避免聚类算法受实际购买数量的影响,对每个时间序列数据记录进行归一化处理,使其在聚类时具有相同的权重。

1.3 聚类结果与分析

使用K-Means聚类算法生成不同簇数(K = 35、K = 40、K = 45和K = 50)的聚类解决方案。基于轮廓系数,选择具有45个簇的解决方案进行进一步分析。

在生成的45个簇中,发现了许多有趣的互补部件集合,这些信息有助于销售员工制定定价、销售和营销策略。以供应给D公司的部件D -

考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建求解过程,重点关注不确定性处理方法需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习交叉验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值