确定性双自动机、k-可测试语言的学习与决策问题
1. 确定性双自动机相关概念与决策问题
在自动机理论中,确定性双自动机及其子类是重要的研究对象。我们先来看一些关键的定义和性质。
有一类特殊的自动机,对于其状态转移规则,若 (q · b \in Q_L) ,则 (q ·’ b) 按相应规则转移;若 (q · b \in Q_R) ,则 (q ·’ b = (q · b) ◦ a) (前提是状态 ((q · b) ◦ a) 存在)。例如,对于语言 (L = b^ a) ,它可由 DBWP (({i, f}, \varnothing, {a, b}, ·, ◦, i, {f})) 识别,其中 (i · b = i) , (i · a = f) ,而 (L a^{-1} = b^ ) ,且 (b^*) 不在 DBWP 中,因为 DBWP 中的一元语言只包含单个单词。
在决策问题方面,Greibach 定理是一个重要工具。该定理指出:若 (C) 是一类语言,它在与正则集的连接和并运算下有效封闭,且对于足够大的 (\Sigma) , “(=\Sigma^*)” 问题不可判定,对于 (C) 中包含所有正则集且在右商运算下封闭的非平凡子集 (P) ,则判断 (C) 中的语言是否属于 (P) 是不可判定的。
基于此定理,我们有以下结论:
- 对于 (C = CF) 和 (P = NB) ,判断 (CF) 中的语言是否属于 (NB) 是不可判定的。
- 对于 (C = NB) 和 (P = Reg) ,判断 (NB) 中的语言是否为正则语言是不可判定的。
- 对于 (P \in {DB, DBW, DBWR}) ,判断 (NB)
超级会员免费看
订阅专栏 解锁全文
25

被折叠的 条评论
为什么被折叠?



