https://www.luogu.org/problem/P1040
题目描述
设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:
subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。
若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;
(1)tree的最高加分
(2)tree的前序遍历
输入格式
第1行:1个整数n(n<30),为节点个数。
第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。
输出格式
第1行:1个整数,为最高加分(Ans ≤4,000,000,000)。
第2行:n个用空格隔开的整数,为该树的前序遍历。
输入输出样例
输入 #1
5
5 7 1 2 10
输出 #1
145
3 1 2 4 5
代码
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int N = 50;
int n;
int w[N];
unsigned f[N][N];
int root[N][N];
void dfs(int l, int r)
{
if (l > r) return;
int k = root[l][r];
printf("%d ", k, f[l][r]);
dfs(l, k - 1);
dfs(k + 1, r);
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
for (int len = 1; len <= n; len++)
for (int l = 1; l + len - 1 <= n; l++)
{
int r = l + len - 1;
for (int k = l; k <= r; k++)
{
int left = k == l ? 1 : f[l][k - 1];
int right = k == r ? 1 : f[k + 1][r];
int score = left *right + w[k];
if (l == r) score = w[k];
if (f[l][r] < score)
{
f[l][r] = score;
root[l][r] = k;
}
}
}
printf("%d\n", f[1][n]);
dfs(1, n);
puts("");
return 0;
}