Hadoop 使用 MapReduce 排序 思路、全局排序

本文介绍了如何利用Hadoop的MapReduce进行大规模数据的全局排序。通过采样器预估边界,设置Partition确保各分区内部有序,再通过多轮MapReduce实现数据的最终有序。总结了应用Hadoop进行数据排序的步骤、注意事项和Hadoop计算模型的优势。
摘要由CSDN通过智能技术生成

本文主要讲对key的排序,主要利用hadoop的机制进行排序。

1、Partition

partition作用是将map的结果分发到多个Reduce上。当然多个reduce才能体现分布式的优势。

2、思路

由于每个partition内部是有序的,所以只要保证各partition间有序,即可保证全部有序。

3、问题

有了思路,如何定义partition的边界,这是个问题。

解决办法:hadoop提供了一个采样器帮我们预估整个边界,以使数据的分配尽量平均


引用:http://stblog.baidu-tech.com/?p=397

2.   Hadoop应用实例:大规模数据的排序

Hadoop平台没有提供全局数据排序,而在大规模数据处理中进行数据的全局排序是非常普遍的需求。大量的将大规模数据任务切分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值