Flink入门

本文介绍了Apache Flink的基本概念,包括其作为分布式处理引擎的角色,数据处理流程,核心架构,相关术语,以及三种不同的运行模式:本地模式、独立模式和集群模式,详细阐述了每种模式的特点和应用场景。
摘要由CSDN通过智能技术生成

1.定义

核心是用java和scala编写的框架和分布式处理引擎java api scala api,用于对无界(实时流数据)和有界数据流(离线数据也称为批量数据处理)进行有状态计算

2.数据过程

处理数据过程抽象为三个过程:source ->Transform -> Sink

3.架构设计

在这里插入图片描述

4.相关术语

物理部署层-deploy层:负责解决Flink的部署模式问题,
Runtime核心层:是Flink分布式计算框架的核心实现层,负责对上层不同接口提供基础服务。将DataStream和DataSet转成统一的可执行的Task Operator,达到在流式计算引擎下同时处理批量计算和流式计算的目的
API & Libraries层:负责更好的开发用户体验,包括易用性、开发效率、执行效率、状态管理等方面,Flink同时提供了支撑流计算和批处理的接口,同时在这基础上抽象出不同的应用类型的组件库,

5.运行模式

三种运行模式区分点:集群生命周期和资源隔离保证,应用程序的main()方法是在客户端还是在集群上执行
本地运行模式::一个机器启动一个进程的多线程来模拟分布式计算。
standalone模式:运行过程:完全独立的Flink集群的模式,各个环节均Flink自己搞定。并没有yarn、mesos的统一资源调度平台。
集群运行模式ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值