(1)嵌套矩形:
有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽。
矩形X(a,b)可以嵌套在矩形Y(c,d)中的条件为:
当且仅当①a<c,b<d或者②b<c,a<d。
求:尽量多的矩形被嵌套。
设d[i]为以矩形 i 结尾的最长链的长度,则有:
有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽。
矩形X(a,b)可以嵌套在矩形Y(c,d)中的条件为:
当且仅当①a<c,b<d或者②b<c,a<d。
求:尽量多的矩形被嵌套。
设d[i]为以矩形 i 结尾的最长链的长度,则有:
d[i]=max(d[i],d[j]|矩形 j 可以嵌套在矩形 i 中)+1
(2)硬币问题:
有n种硬币,面值分别为V1,V2,V3.,..,Vn,每种都有无限多。给定一个非负整数数S。
问:要使得硬币面值之和恰好等于S。最多可以选择多少枚硬币,最少要选择多少枚硬币?
设f[i]和g[i]分别为面值和恰好等于i时,硬币数目的最小值和最大值,则有:
f[i]=min(f[i],f[i-Vj]+1|Vj<=i) 此时f[i]赋初值INF
g[i]=max(g[i],g[i-Vj]+1|Vj<=i) 此时g[i]赋初值0