低秩表示的学习--Latent Low-Rank Representation(LatLLR)

本文介绍了低秩表示的基本概念及其在数据去噪和子空间分割中的应用。通过LatLLR理论,探讨了如何在无噪声或噪声环境下鲁棒地分割子空间,并通过实例展示了其在实际场景中的效果,如视频序列的运动分析。参考了史加荣和胡正平的低秩矩阵恢复算法论文,以及Guangcan Liu的LatLLR方法。
摘要由CSDN通过智能技术生成

最近读了LLR(Low Rank Representation)的文章,所以整理一下。本文的主线是LLR-->LantLLR-->RobustLLR

代码地址https://download.csdn.net/download/smilebluesky/10555664

一、低秩表示

刚开始接触低秩表示是看到一篇论文里面对公式进行了低秩约束,感觉很好奇,查了一下后,发现低秩很神奇,可以将噪声和干净数据自动分割出来。因为这一部分比较基础所以参考一篇中文论文[1]

 

稀疏表示也是将数据集矩阵表示成字典的线性组合,但是不同的是稀疏表示希望系数是稀疏的。

举例:

 

可以把Ui理解为空间里的基,然后Q是

  • 17
    点赞
  • 116
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
Stable-Diffusion是一种用于图像生成、插值和修复的深度学习模型。其中,Latent Diffusion是Stable-Diffusion模型的一部分,用于对图像的表示进行扰动和采样,从而实现图像生成和插值。 具体来说,Latent Diffusion是一种基于扰动的采样方法,用于对图像的表示进行采样。在Latent Diffusion中,我们将原始的维向量表示视为一个潜在状态,然后对这个潜在状态进行扰动,得到一系列新的潜在状态。接着,我们可以使用这些新的潜在状态来生成新的图像。 Latent Diffusion的作用是实现对图像表示的随机采样,从而实现图像生成和插值。通过对表示进行扰动,我们可以生成出多个不同的潜在状态,从而实现多样化的图像生成和插值。此外,Latent Diffusion还可以应用于图像修复,例如在图像中添加噪声或遮挡时,我们可以使用Latent Diffusion来恢复原始图像。 举个例子,假设我们想要生成一张全新的室内场景图像,我们可以使用Stable-Diffusion模型和Latent Diffusion来实现。首先,我们可以使用训练好的Stable-Diffusion模型生成一个初始的维向量表示,并对这个维向量表示进行扰动,得到一系列新的维向量表示。接下来,我们可以使用Autoencoder模型对这些新的维向量表示进行解码,生成一系列新的室内场景图像。这样,我们就可以生成出多样化的、具有室内场景特征的图像。同时,我们也可以使用Latent Diffusion来实现图像插值,例如将两个不同的维向量表示进行线性插值,得到两张室内场景图像之间的中间图像。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值