自动驾驶
文章平均质量分 78
smilelingling
这个作者很懒,什么都没留下…
展开
-
【ResNet网络模型】
对于直连边,当输入和输出维度一致时,可以直接将输入加到输出上,这相当于简单执行了同等映射,不会产生额外的参数,也不会增加计算复杂度。我们可以转换为学习一个残差函数F(x) = H(x) - x. 只要F(x)=0,就构成了一个恒等映射H(x) = x. 此外,拟合残差会更加容易。ResNet团队分别构建了带有“直连边(Shortcut Connection)”的ResNet残差块、以及降采样的ResNet残差块,区别是降采样残差块的直连边增加了一个1×1的卷积操作。第二个构建层,由3个残差模块构成。原创 2023-10-24 16:48:52 · 217 阅读 · 0 评论 -
BEV3D检测模型
其中,(1)和(3)使Fast-BEV能够在车载芯片上快速推理和方便部署,(2),(4)和(5)确保Fast-BEV具有竞争力的性能。通过实验,在2080Ti平台上,本文的ResNet-50模型在nuScenes验证集上可以运行达到52.6FPS和47.3%的NDS,超过了BEVDepth-R50模型的41.3 FPS和47.5%的NDS和BEVDet4D-R50模型的30.2 FPS和45.7%的NDS。本文提出了一种简单而有效的框架,称为Fast-BEV,它能够在车载芯片上执行更快的BEV感知。原创 2023-08-09 15:50:04 · 150 阅读 · 0 评论