luogu P1020 导弹拦截

一道需要深入理解的编程题目,涉及最长非递减序列的优化求解。第一问转化为求最长递增序列,利用Dilworth定理解决。难点在于实现O(log n)的时间复杂度,可以通过树形数组或线段树优化。推荐理解树形数组的Fenwick Tree概念。
摘要由CSDN通过智能技术生成

题解

这是一道需要加深理解才能ac的题目。
第一问 就是求最长非递减序列(倒序)的长度,用dp解很容易但是只有O(n),要优化到O(log n)需要一点高级的数据结构帮忙。
第二问 想了很久 发现用naive的屡次去除最长序列的方法失败。看了下大佬的解答,
发现了一个全新的定理 Dilworth D i l w o r t h 定理。这是一个离散数学里的知识点。
大意是讲 在一个偏序集合中 反链的最长长度恰好是 该集合中链的最小划分。
说白了这第二问就变成了求 最长递增序列(顺序)。( 结果两问其实都是一回事…
我觉得比较有帮助理解的网站
Dilworth定理 – NOIP1999T1
DILWORTH 定理

所以其实这题最难的还是如何以O(log n)来求最长XX子序列。看了一下大体上有两种数据结构可以优化
分别是 树形数组 和 线段树 (树形数组要理解才能用
这里给出我看过的有帮助的介绍
树形数组:
花花酱 Fenwick Tree / Binary Indexed Tree

关键要建立树的形状 并且清楚 add 和 query 的运动轨迹。

线段树:
待更


代码

树形数组

// 省略头文件
int n,m,maxn;
int cot[100001];
int f[100001];

int lowbit(int x){ return x&-x;}

void add(int pos, int c){
    for(int i=pos;i<=maxn; i+=lowbit(i))
        f[i] = max(f[i],c);
}

int query(int pos){
    int res = 0;
    for(int i=pos;i>=1;i-=lowbit(i))
        res = max(res,f[i]);
    return res;
}

int main(){

    int num;
    n = 0,maxn=0;
    while(cin>>num){
        cot[++n] = num;
        maxn = max( maxn,num);
    }

    int ans,q;
    ans = 0;
    for(int i=n;i>=1;i--){// 倒着算 最长 非递减 序列
        q = query( cot[i] ) +1;// 查找不低于此高度 的最长长度
        add( cot[i], q);// 添加到树形数组中
        ans = max(ans,q);
    }

    cout<<ans<<endl;
    ans = 0;
    memset(f,0,sizeof(f));
    for(int i=1;i<=n;i++){// 顺着算最长 递增 序列
        q = query( cot[i]-1 ) +1;// 查找 低于此高度 的最长长度
        add( cot[i], q);
        ans = max(ans,q);
    }
    cout<<ans<<endl;    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值