题解
这是一道需要加深理解才能ac的题目。
第一问 就是求最长非递减序列(倒序)的长度,用dp解很容易但是只有O(n),要优化到O(log n)需要一点高级的数据结构帮忙。
第二问 想了很久 发现用naive的屡次去除最长序列的方法失败。看了下大佬的解答,
发现了一个全新的定理
Dilworth
D
i
l
w
o
r
t
h
定理。这是一个离散数学里的知识点。
大意是讲 在一个偏序集合中 反链的最长长度恰好是 该集合中链的最小划分。
说白了这第二问就变成了求 最长递增序列(顺序)。( 结果两问其实都是一回事…
我觉得比较有帮助理解的网站
Dilworth定理 – NOIP1999T1
DILWORTH 定理
所以其实这题最难的还是如何以O(log n)来求最长XX子序列。看了一下大体上有两种数据结构可以优化
分别是 树形数组 和 线段树 (树形数组要理解才能用
这里给出我看过的有帮助的介绍
树形数组:
花花酱 Fenwick Tree / Binary Indexed Tree
关键要建立树的形状 并且清楚 add 和 query 的运动轨迹。
线段树:
待更
代码
树形数组
// 省略头文件
int n,m,maxn;
int cot[100001];
int f[100001];
int lowbit(int x){ return x&-x;}
void add(int pos, int c){
for(int i=pos;i<=maxn; i+=lowbit(i))
f[i] = max(f[i],c);
}
int query(int pos){
int res = 0;
for(int i=pos;i>=1;i-=lowbit(i))
res = max(res,f[i]);
return res;
}
int main(){
int num;
n = 0,maxn=0;
while(cin>>num){
cot[++n] = num;
maxn = max( maxn,num);
}
int ans,q;
ans = 0;
for(int i=n;i>=1;i--){// 倒着算 最长 非递减 序列
q = query( cot[i] ) +1;// 查找不低于此高度 的最长长度
add( cot[i], q);// 添加到树形数组中
ans = max(ans,q);
}
cout<<ans<<endl;
ans = 0;
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++){// 顺着算最长 递增 序列
q = query( cot[i]-1 ) +1;// 查找 低于此高度 的最长长度
add( cot[i], q);
ans = max(ans,q);
}
cout<<ans<<endl;
return 0;
}