原创

luogu P1338 末日的传说

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/smmyy022/article/details/82458635

题解

本质就是算逆序对数。
n个降序排列的数能提供 (n-1)*n/2 个逆序对,这是n个数能创造出的最多逆序对数。
那如何排列出任意m个逆序对呢?
显然第一步是找出能覆盖 m 的最小 n 来,即 (n-1)*n/2 >= m。
n 能覆盖,那么 n-1 就不能覆盖 m,而 m 与 n-1 的覆盖 之间的差值 dis = m-(n-1)*(n-2)/2,如何填补?
这个差值 dis 应由头位数与后面数字交换得到,。
举例好理解: 1 2 3 4 5 五位数 想创造出5个逆序
此时 n 算得为4 : (n-1)*n/2=6 >= (m=5) -> n=4 可知这逆序对要由最后后4位数创造
而 dis = m-(n-1)*(n-2)/2 = 5 - 3 = 2 三位全降序只能创造3个逆序,仍然差2位
那么我们将 2 与 4 交换 那么4就在头位了,4就创造出2个逆序了。
再对尾部 n-1 个数降序sort一下,就刚好创造出 2+3 个逆序了。


Code

// head files excluded
using namespace std;

int n,m;
int cot[50001];
int main(){


    cin>>n>>m;
    for(int i=1;i<=n;i++) cot[i] = i;

    unsigned bar=0,k=1; // Int will exceed limit
    for(k;k<=n;k++) 
        if( (k-1) * k /2 >= m ) {
        bar = m - (k-1)*(k-2)/2;    
        break;
    }
    if(bar!=0){
        swap(cot[n-k+1],cot[n-k+1+bar]);
        sort(cot+n-k+2, cot+1+n ,greater<int>());
    }else sort(cot+n-k+1, cot+1+n ,greater<int>());

    for(int i=1;i<=n;i++) cout<<cot[i]<<" ";

    return 0;
}
文章最后发布于: 2018-09-06 11:35:54
展开阅读全文
0 个人打赏

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览