L2-023. 图着色问题
时间限制
300 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越
图着色问题是一个著名的NP完全问题。给定无向图 G = (V, E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0 < V <= 500)、E(>= 0)和K(0 < K <= V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(<= 20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出“Yes”,否则输出“No”,每句占一行。
输入样例:6 8 3 2 1 1 3 4 6 2 5 2 4 5 4 5 6 3 6 4 1 2 3 3 1 2 4 5 6 6 4 5 1 2 3 4 5 6 2 3 4 2 3 4输出样例:
Yes Yes No No
#include<iostream>
#include<vector>
#include<set>
using namespace std;
struct node //图的节点
{
vector<int> v;
int c;
}an[500];
int main()
{
int v,e,k,n;
set<int> s; //set判断颜色数目
cin >> v >> e >> k;
for(int i=0;i<e;i++)
{
int a,b;
cin >> a >> b;
an[a].v.push_back(b); //无向图
an[b].v.push_back(a);
}
cin >> n;
for(int i=0;i<n;i++)
{
for(int j=1;j<=v;j++)
{
int a;
cin >> a;
s.insert(a);
an[j].c=a;
}
if(s.size()!=k) //判断颜色数目是否为k
{
cout << "No" << endl;
}
else
{
int flag=1;
vector<int>::iterator it;
for(int i=1;i<=v;i++) //对于每个节点,判断其邻接的节点是否颜色重复
{
for(it=an[i].v.begin();it!=an[i].v.end();it++)
{
if(an[i].c==an[*it].c)
{
flag=0;
break;
}
}
}
if(flag)
cout << "Yes" << endl;
else
cout << "No" << endl;
}
s.clear(); //清空set
}
return 0;
}