L2-023. 图着色问题

L2-023. 图着色问题

时间限制
300 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越

图着色问题是一个著名的NP完全问题。给定无向图 G = (V, E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:

输入在第一行给出3个整数V(0 < V <= 500)、E(>= 0)和K(0 < K <= V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(<= 20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:

对每种颜色分配方案,如果是图着色问题的一个解则输出“Yes”,否则输出“No”,每句占一行。

输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
#include<iostream>
#include<vector>
#include<set>
using namespace std;
struct node                           //图的节点 
{
	vector<int> v;
	int c;
}an[500];
int main()
{
	int v,e,k,n;
	set<int> s;                      //set判断颜色数目 
	cin >> v >> e >> k;
	for(int i=0;i<e;i++)
	{
		int a,b;
		cin >> a >> b;
		an[a].v.push_back(b);        //无向图 
		an[b].v.push_back(a);
	}
	cin >> n;
	for(int i=0;i<n;i++)
	{
		for(int j=1;j<=v;j++)
		{
			int a;
			cin >> a;
			s.insert(a);
			an[j].c=a;
		}
		if(s.size()!=k)             //判断颜色数目是否为k 
		{
			cout << "No" << endl;
		}
		else
		{
			int flag=1;
			vector<int>::iterator it;
			for(int i=1;i<=v;i++)  //对于每个节点,判断其邻接的节点是否颜色重复 
			{
				for(it=an[i].v.begin();it!=an[i].v.end();it++)
				{
					if(an[i].c==an[*it].c)
					{
						flag=0;
						break;
					}
				}
			}
			if(flag)
				cout << "Yes" << endl;
			else
				cout << "No" << endl;
		}
		s.clear();               //清空set 
	}
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值