docker

参考: https://blog.csdn.net/weixin_33724059/article/details/90993186

5.打开终端,查看docker是否安装成功

docker --version

6.安装centos镜像  docker pull centos:7.2.1511

7.查看centos镜像 docker images

8.删除镜像: docker rmi ed9c93747fe1

9.进入docker镜像联系centos常用基本操作  docker run -it centos:7.2.1511

10.安装数据库 docker pull mysql:8.0.17

来自:Leonliu

要想查看镜像的版本好TAG,需要在docker hub查看

地址如下:https://hub.docker.com

进入之后,在页面左上角搜索框搜索
以nginx为例:

2、拉取镜像
docker pull centos:6.7 格式为 镜像名:TAG

docker pull centos:7.2.1511

3、查看网络配置ifconfig

 

============================================================

使用docker pull centos命令下载下来的centos镜像是centos7的最小安装包,里面并没有携带ifconfig命令,导致我想查看容器内的ip时不知道该怎么办,google了一下发现了一下命令:

yum provides ifconfig  
yum whatprovides ifconfig 
  • 1
  • 2

示例输出如下:

Loaded plugins: fastestmirror  
Loading mirror speeds from cached hostfile  
 * base: centos.aol.in  
 * extras: centos.aol.in  
 * updates: centos.aol.in  
net-tools-2.0-0.17.20131004git.el7.x86_64 : Basic networking tools  
Repo        : @base  
Matched from:  
Filename    : /usr/sbin/ifconfig  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

以上两个命令时用于输出哪些包包含我们要查找的文件,从结果可以看到,我们要找的包是:net-tools

因此,再输入:

yum install net-tools
  • 1

安装完成后就可以使用ifconfig命令了

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值