【基础算法】简单了解一下常见的几种散列算法?

本文介绍了几种常见的散列算法,包括MD5和SHA家族的安全加密散列函数,CRC的循环冗余校验在通信领域的应用,以及MurmurHash和times31/33在快速哈希检索中的作用。这些算法各有特点,如MD5和SHA的单向性和抗冲突性,CRC的雪崩效应,MurmurHash的速度优势,以及times31/33的简单高效。
摘要由CSDN通过智能技术生成

简单了解一下常见的几种散列算法?


如果觉得对你有帮助,能否点个赞或关个注,以示鼓励笔者呢?!博客目录 | 先点这里

  • 前提概念
    • 好的哈希函数
  • MD5 与 SHA
    • MD5
    • SHA 家族
  • CRC
  • MurmurHash
  • times31/33
    • times33
    • times31

前提概念


好的哈希函数

好的哈希函数

好的哈希函数应该具备如下几种特性

  • One-way 单向性
    输出确定,且无法逆推出源数据,即单向散列函数
  • Collision-resistant 抗冲突性
    产生两个相同散列值的概率低
  • Avalanche effect 雪崩效应
    原始数据的微小改动,会导致散列值巨大的差异

MD5 与 SHA


MD5

md5 摘要算法,又称 “MD5 Message-Digest Algorithm”, 是一种不可逆向的密码散列函数。

特性

  • 任意长度的原始数据,都将输出定长为 128 bit 的散列值
  • 属于加密散列函数,计算较为耗费 CPU 资源

SHA 家族

SHA 家族的加密算法,又称 “Secure Hash Algorithm”, 是一个密码散列函数家族,发布了多个版本的 SHA 加密函数,如 SHA-0,SHA-1,SHA-2,SHA-3 等

特性

  • 大部分仅支持 2^64 -1 的输入数据,根据不同的版本,有不同的位长,如 160,224,256,384,512 等,位数较长
    • sha-0,sha-1 输入不超过 2^64-1, 输出定长 160 bit

对比
  • MD5 和 SHA 通常都用在安全加密领域,因为都涉及数字加密,所以计算量都比较大,都比较消费 CPU 资源
    在这里插入图片描述

CRC


CRC 算法 ("Cyclic Redundancy Check") ,又称循环冗余校验算法,是一种常用于通信链路检错,判断数据是否损坏的散列函数,但也不局限于此,它的基本原理是利用除法与余数的原理来做为错误侦测的

我们进行通信时的网络信道并不总是可靠的。为了增加可靠性,我们需要在传输数据后加上一些冗余的码字。如果接收方能够通过它们直接纠正错误,那么我们就称之为纠错码(Error Correcting Code),而 CRC 就是一种优秀的检错码,因为 CRC 具有良好的雪崩效应,即单个 bit 发生改变,也会导致散列值发生较大的改变,所以得以在通讯领域广泛应用。

原理

  • 计算CRC的过程,就是用一个特殊的“除法”,来得到余数,这个余数就是CRC,而这里的除数则是一种 “模二除法”
  • 通讯传送中,发送方会在原始数据末尾加上 CRC 检错码,并与接收方约定好 “除数 (多项式)”,最会得到余数 (CRC 值),接收方就会以收到的原始数据除以约定好的除数,看看最终的结果是否与 CRC 检错码一致

在这里插入图片描述

比如发送发传输了一段二进制数据,并附上 CRC 校验码。接收方就可以根据所接收到的二进制数据的 CRC 散列值与接收到的 CRC 检错码进行比对,如果不一致,就代表接收的数据可能在通讯传输过程中有缺失或错误

特性

  • CRC 的协议有非常多种,比如 CCITT, MODBUS 等
  • CRC 根据多项式的不同也会产生不同长度的检错码 (散列值),比如 CRC-8,CRC-16,CRC-32,CRC-64, 分别对产生对应 8,16,32,64 位长度的检错码,具有一定的数据压缩映射能力

代码


MurmurHash


MurmurHash 是一种非加密型的散列函数,相比加密型散列函数,速度更快,差值最大可以达到几十倍,所以更适用于一般场景的哈希检索操作。MurmurHash 经历过多个版本的迭代,并有多种变种,当前最新版是 MurmurHash3。
且已被广泛应用在多种分布式系统中,比如 Redis, Kafka, Hbase, ElasticSearch

特性

  • MurmurHash2 可以产生 32/64 bit 范围的散列值,MurmurHash3 可以产生 32/128bit 范围的散列值
  • MurmurHash 支持加盐,即支持加一个种子值,而获得不同的 hash 规律,可以防止哈希洪水攻击(Hash-Flooding Attack

代码

    public static void main(String[] args) {
        HashFunction function = Hashing.murmur3_32();
        System.out.println(function.hashBytes("abcd".getBytes()).asInt());
        // output = 1139631978
    }
  • MurmurHash 的原理解析细节比较多,没看懂,就不贴了,这里是一个 Guava 提供的 murmur3 使用例子
  • murmur3 可以使用在一般的哈希值计算,比如短链系统等
  • redis-client-murmurhash
  • guava-murmurhash3

MurmurHash3_最详细的介绍


times31/33


times33

Times33 算法是一个简单的对 “字符串” 进行哈希的函数,又称 “DJB Hash Function” or “DJBX33A”

原理

  • 对字符串 s 进行逐个字符遍历,每次循环乘以 33,并加上 s[i] 字符的 ascii 码 , 然后求和即可
  • 乘数是33, hash 初始值为 5381

代码

    private static int times33(String s) {
        int hash = 5381;

        char[] val = s.toCharArray();
        for (int i = 0; i < s.length(); i++) {
            hash = ((hash << 5) + hash) + val[i];
        }

        // hash is a positive integer,[0,2^31-1]
        hash &= Integer.MAX_VALUE;
        return hash;
    }
  • a * 33 = a * 2^5 + a = a * 32 + a
  • hash &= 0x7fffffff 是为了获得 0 或 正整数,因为 Java 的 int 是有符号整数,只能表示 [0, 2^31 -1] 的整数

why

  • 为什么取 33?
    • 并没有人给于一个比较充分的理由说明,不过通过对[1,256]数值的实验证明,偶数的哈希分布非常差,冲突较高,所以就剩下 128 个奇数,并不是 33 就是最佳的选项
    • 奇素数,哈希分布相比偶数更为良好
  • 初始值为什么是 5381?

times31

times31 其实是 Java String hashcode 函数所采用的算法,因其思想类似 times33, 但数值采用 31 ,所以被习惯性称之 times31

原理

  • 原理与 times33 一致,仅仅是乘数和初始值的选择不一样
  • 乘数是 31,初始值是 0

代码

    private static int times31(String s) {
        int hash = 0;

        char[] val = s.toCharArray();
        for (int i = 0; i < s.length(); i++) {
            hash = ((hash << 5) - hash) + val[i];
        }
        
        return hash;
    }
  • hash = ((hash << 5) - hash) + val[i] 等价于 hash = 31 * hash + val[i]
  • JDK 显式代码是 31 * hash, 是因为编译器会自行优化

why

  • 为什么取 31
    31 和 33 都是奇素数,理由其实跟 times33 差不多,都是实验数据中,采取比较好的奇素数

参考资料


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值