【Redis笔记】一起学习Redis | 大海捞针,了解scan命令

一起学习Redis | 大海捞针,了解scan命令


如果觉得对你有帮助,能否点个赞或关个注,以示鼓励笔者呢?!博客目录 | 先点这里

  • 前提概要
    • 了解一下keys命令
    • 为什么要使用scan代替keys
  • Scan命令
    • scan衍生类型
    • scan基本使用
    • scan的遍历原理
  • 代码实践
    • scan命令
    • hscan命令
    • sscan命令
    • zscan命令

前提概要


了解一下keys命令

在平时线上的Redis维护过程中,有时候需要从Redis实例中的成千上万个key中找到特定前缀的key集合。可能是批量删除,也可能是批量修改,查询等等。这样就延伸出了一个问题,如何从海量的key中找到满足特定前缀的数据集合?

  • keys pattern
    Redis提供了一个简单粗暴的keys命令来列出所有满足特定正则字符串规则的key

虽然keys命令非常的简单,但是有点过度简单,并且带有两个明显的缺点:

  • 不支持offset, limit功能,既没有分批查询的功能
    如果在海量数据的Redis实例中,如果满足条件的查询有上百万,千万的key,那么该查询操作会非常的耗时。

  • keys命令是线性遍历,时间复杂度是O(n)
    如果符合条件的数据过多,鉴于Redis的单线程模型,该命令会严重阻塞其他客户端在该Redis实例的命令操作。所以keys不适合在生产环境中使用。


为什么要使用scan代替keys

所以Redis为了解决Keys存在缺陷的这个问题,在2.8版本后加入了scan的命令。 那么scan命令相比keys有什么好处呢?

  • 虽然scan复杂度也是O(n) , 但是我的原理是游标分步遍历,提供分批的功能,一次只查一部分。不会对线程造成严重阻塞。
  • 提供了count的参数,类似于limit功能,可以限制一次最多返回的近似最大值

在这里插入图片描述

scan最重要的特性就是可以分批操作,不会一个命令执行很长时间,从而导致阻塞线程。虽然scan有如此多的好处,但是它的操作相对keys而言更为复杂,而且也有几个缺点需要注意

  • 返回的结果可能会有重复,需要用户自己去重
  • 遍历的过程,如果有数据改动,改动后的数据是否能够查到是不能确定的

Scan命令


scan衍生类型

Redis的四种基本容器类型中,只有hash,set,zset支持scan操作,list没有scan操作

针对所有Redis的外部键

  • scan

针对Redis容器类型的键

  • hscan
  • sscan
  • zscan

scan基本使用

命令参数

scan 
   
   
    
    cursor
   
    [MATCH pattern] [COUNT count]  
  • cursor就是游标,第一次查询,游标默认为0。只有当scan返回的游标再次为0,才代表本次整体遍历结束
  • pattren就是字符串匹配规则
  • count就是近视的最大要返回的元素个数,并不严苛,但是大致会在count的范围浮动

如何使用

  • 一般我们可以在代码上封装好分批查询,既要多次调用scan命令,每次都将上次scan返回的游标结果作为下次scan的游标参数。
  • 第一次scan的游标默认为0,在整体的遍历中,只有当之后的某次scan返回的游标结果再次为0,这代表本次整体循环结束。
    在这里插入图片描述

scan特性

  • 单次返回的结果,如果为空,不代表就遍历结束了。只有其返回的游标是空,才代表此次遍历结束
  • 可能会返回重复的结果
  • 每次遍历的数据个数,或多或少,但最大个数肯定在count参数的附近,除非哈希冲突的个数太多了。

scan的遍历原理

在Redis中所有的key都存储在一个很大的字典中,这个字典的结构和Java的HashMap一样。通过一维数组来存储数据,哈希冲突的数据使用链地址法来解决。

在这里插入图片描述

而scan指令是怎么遍历这个数组和链表的呢?

  • scan中的cursor游标实际代表的就是数组的位置索引,Redis将这个位置索引称之为槽(slot)。在不考虑字典扩容的情况下。scan就是按照数组的下标,一个一个遍历槽的。而scan返回游标就是代表此时遍历到数组的这个位置,如要下次遍历,就从这里开始。
  • count并不是要遍历的元素个数,而是一次scan,要遍历的槽的个数,既遍历数组的长度是多少。
  • 之所以有时候返回的数据多,有的时候数据少,甚至有的时候,数据为空。这是因为并不是数组的每个槽都存放有数据的。如果有多个冲突数据,这会存在这个槽的链表中。

代码实践


scan命令
import redis

"""
验证scan命令
"""
client = redis.StrictRedis(host='127.0.0.1', port=6379)
key = "test:"


def set_data():
    """
    (1) 插入1000个string类型key
    """
    for i in range(1000):
        client.set(key + str(i), i)


def scan_data():
    """
    (2)  通过scan遍历这1000个“test:”前缀的数据
    """
    cursor = 0  # 游标起始为0
    sum_number = 0  # 元素总量,验证数量
    while True:
        data = client.scan(cursor, key + '*', 100)
        cursor = data[0]
        sum_number += len(data[1])

        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break
        print(len(data[1]), list(map(
   
   
    
    lambda
   
    key: key.decode('utf-8'), data[1])))

    print(str(sum_number))


def del_data():
    """
    (3)  通过scan删除这1000个“test:”前缀开头的数据
    """
    cursor = 0  # 游标起始为0
    while True:
        data = client.scan(cursor, key + '*', 100)
        cursor = data[0]
        keys = list(map(
   
   
    
    lambda
   
    key: key.decode('utf-8'), data[1]))
        client.delete(*keys)
        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break


if __name__ == '__main__':
    """
    1. 插入1000个数据
    2. 通过scan遍历这1000个数据
    3. 通过scan分批删这个1000个数据,每批扫描100个数据槽,大致10批
    4. 再次通过scan查询这1000个数据,看是否删除成功
    """
    set_data()
    scan_data()
    del_data()
    scan_data()


hscan命令
import redis

"""
验证hscan命令
"""
client = redis.StrictRedis(host='127.0.0.1', port=6379)
outer_key = "
   
   
    
    hash
   
   "
hash_key = "test:"


def hset_data():
    """
    (1) 对"
   
   
    
    hash
   
   "的键插入1000个哈希子数据
    """
    for i in range(1000):
        client.hset(outer_key, hash_key + str(i), i)


def hscan_data():
    """
    (2)  通过hscan遍历这1000个“test:”前缀的子数据
    """
    cursor = 0  # 游标起始为0
    sum_number = 0  # 元素总量,验证数量
    while True:
        data = client.hscan(outer_key, cursor, hash_key + '*', 100)
        cursor = data[0]
        sum_number += len(data[1])

        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break
        print(len(data[1]), list(map(
   
   
    
    lambda
   
    key: key.decode('utf-8'), data[1])))

    print(str(sum_number))


def hdel_data():
    """
    (3)  通过hscan删除这1000个“test:”前缀开头的子数据
    """
    cursor = 0  # 游标起始为0
    while True:
        data = client.hscan(outer_key, cursor, hash_key + '*', 100)
        cursor = data[0]
        keys = list(map(
   
   
    
    lambda
   
    key: key.decode('utf-8'), data[1]))
        client.hdel(outer_key, *keys)
        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break


if __name__ == '__main__':
    """
    1. 向hash类型的"
   
   
    
    hash
   
   "键插入1000个子数据
    2. 通过hscan遍历"
   
   
    
    hash
   
   "键的1000个子数据
    3. 通过hscan分批删这个1000个子数据,每批扫描100个数据槽,大致10批
    4. 再次通过hscan查询这1000个数据,看是否删除成功
    """
    hset_data()
    hscan_data()
    hdel_data()
    hscan_data()


sscan命令
import redis

"""
验证sscan命令
"""
client = redis.StrictRedis(host='127.0.0.1', port=6379)
outer_key = "set"
data_prefix = "set:"


def sadd_data():
    """
    (1) 对"set"的键插入1000个集合子数据,所有集合内容皆以“set:”开头
    """
    for i in range(1000):
        client.sadd(outer_key, data_prefix + str(i))


def sscan_data():
    """
    (2)  通过sscan遍历set键集合的1000个“set:”前缀的子数据
    """
    cursor = 0  # 游标起始为0
    sum_number = 0  # 元素总量,验证数量
    while True:
        data = client.sscan(outer_key, cursor, data_prefix + '*', 100)
        cursor = data[0]
        sum_number += len(data[1])

        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break
        print(len(data[1]), list(map(
   
   
    
    lambda
   
    set_data: set_data.decode('utf-8'), data[1])))

    print(str(sum_number))


def srem_data():
    """
    (3)  通过sscan分批删除这1000个“set:”前缀开头的集合数据
    """
    cursor = 0  # 游标起始为0
    while True:
        data = client.sscan(outer_key, cursor, data_prefix + '*', 100)
        cursor = data[0]
        datas = list(map(
   
   
    
    lambda
   
    set_data: set_data.decode('utf-8'), data[1]))
        client.srem(outer_key, *datas)
        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break


if __name__ == '__main__':
    """
    1. 向set类型的"set"键插入1000个子数据
    2. 通过sscan遍历"set"键的1000个子数据
    3. 通过sscan分批删这个1000个子数据,每批扫描100个数据槽,大致10批
    4. 再次通过sscan查询这1000个数据,看是否删除成功
    """
    sadd_data()
    sscan_data()
    srem_data()
    sscan_data()


zscan
import redis

"""
验证sscan命令
"""
client = redis.StrictRedis(host='127.0.0.1', port=6379)
outer_key = "zset"
data_prefix = "zset:"


def zadd_data():
    """
    (1) 对"zset"的键插入1000个有序集合子数据,所有集合内容皆以“zset:”开头
    """

    for i in range(1000):
        item = {
            data_prefix + str(i): i
        }
        client.zadd(outer_key, item)


def zscan_data():
    """
    (2)  通过zscan遍历zset键有序集合的1000个“zset:”前缀的子数据
    """
    cursor = 0  # 游标起始为0
    sum_number = 0  # 元素总量,验证数量
    while True:
        data = client.zscan(outer_key, cursor, data_prefix + '*', 100)
        cursor = data[0]
        sum_number += len(data[1])

        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break
        zset_tuple = data[1]
        print(len(data[1]), list(map(
   
   
    
    lambda
   
    zset_data: zset_data[0].decode('utf-8'), zset_tuple)))

    print(str(sum_number))


def zrem_data():
    """
    (3)  通过zscan分批删除这1000个“zset:”前缀开头的有序集合数据
    """
    cursor = 0  # 游标起始为0
    while True:
        data = client.zscan(outer_key, cursor, data_prefix + '*', 100)
        cursor = data[0]
        zset_tuple = data[1]
        datas = list(map(
   
   
    
    lambda
   
    zset_data: zset_data[0].decode('utf-8'), zset_tuple))
        client.zrem(outer_key, *datas)
        if cursor == 0:  # 只要游标变回0,代表遍历结束
            break


if __name__ == '__main__':
    """
    1. 向zset类型的"zset"键插入1000个子数据
    2. 通过zscan遍历"zset"键的1000个子数据
    3. 通过zscan分批删这个1000个子数据,每批扫描100个数据槽,大致10批
    4. 再次通过zscan查询这1000个数据,看是否删除成功
    """
    zadd_data()
    zscan_data()
    zrem_data()
    zscan_data()


相关知识点


如何应对大key的操作

大key数据,每次的set, get, del都是需要花费大量的时间。所以我们需要对这些大key的数据进行分批操作

  • 对于是string类型的大key,那只能杜绝这类key的出现

针对容器类型的大key , 比如hash, list, set, zset等,我们都可以考虑使用分批操作,比如删除操作:

  • Large Hash Key 可使用hscan命令,每次获取500个字段,再用hdel命令,每次500个内部元素。
  • Large Set Key 可使用sscan命令,每次扫描集合中500个元素,再用srem命令每次删除500个元素。
  • Large List Key 可通过ltrim命令每次删除部分元素,直到全部删除
  • Large Sorted Set Key 使用zset自带的zremrangebyrank命令,每次删除前500个元素

参考资料


评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值