tensorflow 各版本

tensorflow各个版本

参考文章

  • 1.x各版本下载地址
    https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow/

  • tensorflow各个版本的CUDA以及Cudnn版本对应关系
    https://blog.csdn.net/qq_27825451/article/details/89082978

一、tensorflow各个版本需要的CUDA版本以及Cudnn的对应关系

版本Python 版本编译器编译工具cuDNNCUDA
tensorflow_gpu-2.0.0-alpha02.7、3.3-3.6GCC 4.8Bazel 0.19.27.4.1以及更高版本CUDA 10.0 (需要 410.x 或更高版本)
tensorflow_gpu-1.13.02.7、3.3-3.6GCC 4.8Bazel 0.19.27.410.0
tensorflow_gpu-1.12.02.7、3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.11.02.7、3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.10.02.7、3.3-3.6GCC 4.8Bazel 0.15.079
tensorflow_gpu-1.9.02.7、3.3-3.6GCC 4.8Bazel 0.11.079
tensorflow_gpu-1.8.02.7、3.3-3.6GCC 4.8Bazel 0.10.079
tensorflow_gpu-1.7.02.7、3.3-3.6GCC 4.8Bazel 0.9.079
tensorflow_gpu-1.6.02.7、3.3-3.6GCC 4.8Bazel 0.9.079
tensorflow_gpu-1.5.02.7、3.3-3.6GCC 4.8Bazel 0.8.079
tensorflow_gpu-1.4.02.7、3.3-3.6GCC 4.8Bazel 0.5.468
tensorflow_gpu-1.3.02.7、3.3-3.6GCC 4.8Bazel 0.4.568
tensorflow_gpu-1.2.02.7、3.3-3.6GCC 4.8Bazel 0.4.55.18
tensorflow_gpu-1.1.02.7、3.3-3.6GCC 4.8Bazel 0.4.25.18
tensorflow_gpu-1.0.02.7、3.3-3.6GCC 4.8Bazel 0.4.25.18

二、Nvidia 显卡算力

PC显卡算力

GPUCompute Capability
NVIDIA TITAN RTX7.5
Geforce RTX 2080 Ti7.5
Geforce RTX 20807.5
Geforce RTX 20707.5
Geforce RTX 20607.5
NVIDIA TITAN V7.0
NVIDIA TITAN Xp6.1
NVIDIA TITAN X6.1
GeForce GTX 1080 Ti6.1
GeForce GTX 10806.1
GeForce GTX 10706.1
GeForce GTX 10606.1
GeForce GTX 10506.1
GeForce GTX TITAN X5.2
GeForce GTX TITAN Z3.5
GeForce GTX TITAN Black3.5
GeForce GTX TITAN3.5
GeForce GTX 980 Ti5.2
GeForce GTX 9805.2
GeForce GTX 9705.2
GeForce GTX 9605.2
GeForce GTX 9505.2
GeForce GTX 780 Ti3.5
GeForce GTX 7803.5
GeForce GTX 7703.0
GeForce GTX 7603.0
GeForce GTX 750 Ti5.0
GeForce GTX 7505.0
GeForce GTX 6903.0
GeForce GTX 6803.0
GeForce GTX 6703.0
GeForce GTX 660 Ti3.0
GeForce GTX 6603.0
GeForce GTX 650 Ti BOOST3.0
GeForce GTX 650 Ti3.0
GeForce GTX 6503.0
GeForce GTX 560 Ti2.1
GeForce GTX 550 Ti2.1
GeForce GTX 4602.1
GeForce GTS 4502.1
GeForce GTS 450*2.1
GeForce GTX 5902.0
GeForce GTX 5802.0
GeForce GTX 5702.0
GeForce GTX 4802.0
GeForce GTX 4702.0
GeForce GTX 4652.0
GeForce GT 7403.0
GeForce GT 7303.5
GeForce GT 730 DDR3,128bit2.1
GeForce GT 7203.5
GeForce GT 705*3.5
GeForce GT 640 (GDDR5)3.5
GeForce GT 640 (GDDR3)2.1
GeForce GT 6302.1
GeForce GT 6202.1
GeForce GT 6102.1
GeForce GT 5202.1
GeForce GT 4402.1
GeForce GT 440*2.1
GeForce GT 4302.1
GeForce GT 430*2.1

笔记本显卡算力

GPUCompute Capability
Geforce RTX 20807.5
Geforce RTX 20707.5
Geforce RTX 20607.5
GeForce GTX 10806.1
GeForce GTX 10706.1
GeForce GTX 10606.1
GeForce GTX 9805.2
GeForce GTX 980M5.2
GeForce GTX 970M5.2
GeForce GTX 965M5.2
GeForce GTX 960M5.0
GeForce GTX 950M5.0
GeForce 940M5.0
GeForce 930M5.0
GeForce 920M3.5
GeForce 910M5.2
GeForce GTX 880M3.0
GeForce GTX 870M3.0
GeForce GTX 860M3.0/5.0(**)
GeForce GTX 850M5.0
GeForce 840M5.0
GeForce 830M5.0
GeForce 820M2.1
GeForce 800M2.1
GeForce GTX 780M3.0
GeForce GTX 770M3.0
GeForce GTX 765M3.0
GeForce GTX 760M3.0
GeForce GTX 680MX3.0
GeForce GTX 680M3.0
GeForce GTX 675MX3.0
GeForce GTX 675M2.1
GeForce GTX 670MX3.0
GeForce GTX 670M2.1
GeForce GTX 660M3.0
GeForce GT 755M3.0
GeForce GT 750M3.0
GeForce GT 650M3.0
GeForce GT 745M3.0
GeForce GT 645M3.0
GeForce GT 740M3.0
GeForce GT 730M3.0
GeForce GT 640M3.0
GeForce GT 640M LE3.0
GeForce GT 735M3.0
GeForce GT 635M2.1
GeForce GT 730M3.0
GeForce GT 630M2.1
GeForce GT 625M2.1
GeForce GT 720M2.1
GeForce GT 620M2.1
GeForce 710M2.1
GeForce 705M2.1
GeForce 610M2.1
GeForce GTX 580M2.1
GeForce GTX 570M2.1
GeForce GTX 560M2.1
GeForce GT 555M2.1
GeForce GT 550M2.1
GeForce GT 540M2.1
GeForce GT 525M2.1
GeForce GT 520MX2.1
GeForce GT 520M2.1
GeForce GTX 485M2.1
GeForce GTX 470M2.1
GeForce GTX 460M2.1
GeForce GT 445M2.1
GeForce GT 435M2.1
GeForce GT 420M2.1
GeForce GT 415M2.1
GeForce GTX 480M2.0
GeForce 710M2.1
GeForce 410M2.1

三、名词

CUDA

CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。

  • CUDA的本质是一个工具包(ToolKit);但是二者虽然不一样的。

  • CUDA和显卡驱动是没有版本绑定关系。
    显卡驱动下载地址: https://www.nvidia.com/Download/index.aspx?lang=en-us
    CUDA的下载地址为:https://developer.nvidia.com/cuda-downloads

  • 查看自己所安装的CUDA的版本
    (1)直接在NVIDIA的控制面板里面查看NVCUDA.DLL的版本。(注意:并不能绝对说明自己安装的CUDA工具包一定这个版本)
    (2)通过命令查看:nvcc -V 或者是nvcc --version都可以,但前提是添加了环境变量
    (3)直接通过文件查看,这里分为Linux和windows两种情况

在windows平台
可以直接进入CUDA的安装目录,比如我的是:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2 里面有一个version.txt的文本文件,直接打开即可,也可以使用命令,即

首先进入到安装目录,然后执行:type version.txt 即可查看

在Linux平台下:

同windows类似,进入到安装目录,然后执行 cat version.txt 命令

cuDNN

是一个SDK,是一个专门用于神经网络的加速包,注意,它跟我们的CUDA没有一一对应的关系,即每一个版本的CUDA可能有好几个版本的cuDNN与之对应,但一般有一个最新版本的cuDNN版本与CUDA对应更好。

  • cuDNN与CUDA没有版本绑定的关系。
查看自己的cuDNN的版本
  • windows平台:

进入安装目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include 之下,然后找到

cudnn.h 的头文件,直接打开查看,在最开始的部分会有如下定义:

#define CUDNN_MAJOR 7
#define CUDNN_MINOR 5
#define CUDNN_PATCHLEVEL 0

define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)即7500,也就是cudnn的版本为7.5.0版本;

  • Linux下通过命令:

    cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

即5005,即5.0.5版本的cudnn。
在这里插入图片描述

CUPTI

CUDA 工具包附带的 CUPTI。 CUPTI,即CUDA Profiling Tools Interface (CUPTI)。在CUDA分析工具接口(CUPTI)能够分析和跟踪靶向CUDA应用程序的工具的创建。CUPTI提供以下API:
Activity API 、 Callback API 、事件API、 Metric API 、 Profiler API
API文档地址 https://docs.nvidia.com/cupti/Cupti/index.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值