tensorflow各个版本
参考文章
-
1.x各版本下载地址
https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow/ -
tensorflow各个版本的CUDA以及Cudnn版本对应关系
https://blog.csdn.net/qq_27825451/article/details/89082978
一、tensorflow各个版本需要的CUDA版本以及Cudnn的对应关系
版本 | Python 版本 | 编译器 | 编译工具 | cuDNN | CUDA |
---|---|---|---|---|---|
tensorflow_gpu-2.0.0-alpha0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.19.2 | 7.4.1以及更高版本 | CUDA 10.0 (需要 410.x 或更高版本) |
tensorflow_gpu-1.13.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.19.2 | 7.4 | 10.0 |
tensorflow_gpu-1.12.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.15.0 | 7 | 9 |
tensorflow_gpu-1.11.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.15.0 | 7 | 9 |
tensorflow_gpu-1.10.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.15.0 | 7 | 9 |
tensorflow_gpu-1.9.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.11.0 | 7 | 9 |
tensorflow_gpu-1.8.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.10.0 | 7 | 9 |
tensorflow_gpu-1.7.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.9.0 | 7 | 9 |
tensorflow_gpu-1.6.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.9.0 | 7 | 9 |
tensorflow_gpu-1.5.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.8.0 | 7 | 9 |
tensorflow_gpu-1.4.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.5.4 | 6 | 8 |
tensorflow_gpu-1.3.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.5 | 6 | 8 |
tensorflow_gpu-1.2.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.5 | 5.1 | 8 |
tensorflow_gpu-1.1.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.2 | 5.1 | 8 |
tensorflow_gpu-1.0.0 | 2.7、3.3-3.6 | GCC 4.8 | Bazel 0.4.2 | 5.1 | 8 |
二、Nvidia 显卡算力
PC显卡算力
笔记本显卡算力
三、名词
CUDA
CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。
-
CUDA的本质是一个工具包(ToolKit);但是二者虽然不一样的。
-
CUDA和显卡驱动是没有版本绑定关系。
显卡驱动下载地址: https://www.nvidia.com/Download/index.aspx?lang=en-us
CUDA的下载地址为:https://developer.nvidia.com/cuda-downloads -
查看自己所安装的CUDA的版本
(1)直接在NVIDIA的控制面板里面查看NVCUDA.DLL的版本。(注意:并不能绝对说明自己安装的CUDA工具包一定这个版本)
(2)通过命令查看:nvcc -V 或者是nvcc --version都可以,但前提是添加了环境变量
(3)直接通过文件查看,这里分为Linux和windows两种情况
在windows平台
可以直接进入CUDA的安装目录,比如我的是:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2 里面有一个version.txt的文本文件,直接打开即可,也可以使用命令,即
首先进入到安装目录,然后执行:type version.txt 即可查看
在Linux平台下:
同windows类似,进入到安装目录,然后执行 cat version.txt 命令
cuDNN
是一个SDK,是一个专门用于神经网络的加速包,注意,它跟我们的CUDA没有一一对应的关系,即每一个版本的CUDA可能有好几个版本的cuDNN与之对应,但一般有一个最新版本的cuDNN版本与CUDA对应更好。
- cuDNN与CUDA没有版本绑定的关系。
查看自己的cuDNN的版本
- windows平台:
进入安装目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include 之下,然后找到
cudnn.h 的头文件,直接打开查看,在最开始的部分会有如下定义:
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 5
#define CUDNN_PATCHLEVEL 0
define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)即7500,也就是cudnn的版本为7.5.0版本;
-
Linux下通过命令:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
即5005,即5.0.5版本的cudnn。
CUPTI
CUDA 工具包附带的 CUPTI。 CUPTI,即CUDA Profiling Tools Interface (CUPTI)。在CUDA分析工具接口(CUPTI)能够分析和跟踪靶向CUDA应用程序的工具的创建。CUPTI提供以下API:
Activity API 、 Callback API 、事件API、 Metric API 、 Profiler API
API文档地址 https://docs.nvidia.com/cupti/Cupti/index.html