Coursera数学思维导论之学生互评打分标准

本文介绍了一个数学思维导论课程中的学生互评打分标准。详细解释了从逻辑正确性、清晰度等六个角度进行评价的方法,并强调了互评的目的在于促进相互学习与进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学思维导论之学生互评打分标准(测试版)

Introduction to Mathematical Thinking. Peer Review Grading Rubric (beta)

        数学思维导论课很好的老师、很好的内容,就是从第二周还是第几周开始,每周都有的最后那道打分题太让我无法适从了,看到那密密麻麻的打分标准,我已经眼花缭乱,第一次评分时,我强忍不适,认真地读了一下,结果晕菜了,完全没理解。所以为了帮助自己,随便也方便大众(希望能方便到),特翻译之,希望大家看到熟悉的中文后,打分水平更上一层楼……目前为之哥们我就只做了一次啊,还是一次明显的垃圾证明时才正确的,其他时候全部打分过低了。

       给数学的证明进行评分,这个需要进行全盘考虑,不能想当然而为之。扯点远的,拿儒家观点来看秦始皇,永远都是一个样——暴君和儒家不共戴天的敌人,所以不管秦始皇的文治武功有多少辉煌,对中国文化的积极影响有多深远,也摆脱不了被中国人民永远骂下去的命运。

      扯回来了,给数学证明过程打分,理想情况是找对数学证明和这个领域熟悉的专业人士来完成的,只是这在MOOC上不可能实现。

      于是,KD和他的助教们就要依靠“集体智慧”了。先定下一些证明的评分标准,这样大家在打分时就可以来参考参考了(英文的参考着头晕,就来参考我的翻译吧,我不介意的)。

 

       好,重要部分来了,我们要从6个角度(在左侧这一列里)来评价学生提交的作品。每个角度的分数有024三种,当然你很有把握时,可以用13,不过建议还是用024吧。

       另外,即使已经有这种评分标准了,你还是需要自己做出最终的重要选择。为了帮助你提高这个打分准确性,所以这课里面会有很多周的评分练习(也是有分的),让你来根据这个评分标准进行打分,我们最后再来说明下为什么打这个分数,帮助你理解。

       *  如果证明的论据、论点根本不是在回答那个问题,那么所有角度都应该打0分。

       ** 可以使用最后一个角度(总体评价)来调整分数。(也许我会给英文写得密密麻麻的亲们来个差评发火


       评分标准表:

菜鸟Novice 0

学徒apprentice 2

老鸟practitioner 4

逻辑正确性

犯了原则性错误,根本错误。

大体正确,还是有一些明显的错误

除了某个小暇疵,证明完整而正确,漂亮

清晰度

一团乱麻,三天三夜都不知道他在说什么。

费点力还是能看懂,某些地方挺好理解。

清楚加明白,我顶!

开头opening

证什么、什么方法、哪里有关,我就不告诉你。猜猜呀!

提到一些,但要么不全,要么不是在开始。

清楚正确的说明,自信而迷人。

阐述结论

我的证明过程这么明显了还要再阐述下结论?!评委也太傻了。

那就说说结论吧,要那么清楚而准确的定义干嘛。

漂亮收尾,清楚而准确地描述了完成的工作,加分。

推理过程

好多地方莫名其妙

还是有那么一两个地方莫名其妙。

没有莫名其妙,步步精确制导。

整体评价

看你不顺眼

凑合,还有上升空间

小暇疵,给个好评!


        请记住:互评制度的主要目标是有两面性的:

      (1)对于那些作业正在被评价的人来说,可以从他人处获得有用、有建设性的反馈。

      (2)对于正在评价作业的人来说,学习对他人作业进行评分,已证明评分者可以从中得到极大的收获。

        它激励我们鼓起勇气去展示自己的作品,哪怕你害羞地匿名,当你首次学习某些新鲜事物,对自己的能力不自信的时候——更是需要鼓起勇气去展示自己。

        在互评过程(不管是数学的评分还是其他)中,最可取、最有用的心态是“我如何才能帮助其他人进步”,也许我们遇到过一些数学老师,他们的目的毫不单纯,另有所图。请不要成为那种人。


数据集介绍:多品类农业目标检测数据集 数据集名称:多品类农业目标检测数据集 图片数量: - 训练集:11,911张图片 - 验证集:422张图片 - 测试集:124张图片 - 总计:12,457张高质量图片 分类类别: 涵盖51个农业相关类别,包括水果(苹果、香蕉、芒果、葡萄)、蔬菜(卷心菜、黄瓜、茄子、菠菜)、坚果(杏仁、腰果、榛子、核桃)、调味作物(辣椒、生姜、大蒜)及肉类(牛肉、鸡肉、猪肉)等,完整覆盖农业生产链关键品类。 标注格式: YOLO格式,包含标准化边界框坐标及类别标签,可直接用于目标检测模型训练。 1. 农业自动化分拣系统 支持开发AI驱动的分拣机器人,精准识别水果成熟度、坚果品类及蔬菜质量,提升加工效率。 1. 智能农场监测 用于无人机或摄像头系统,实时检测作物生长状态、病虫害区域及成熟作物分布。 1. 食品加工质量控制 集成至生产线视觉系统,自动检测原料种类(如肉类分类、坚果筛选),确保加工合规性。 1. 农业科研与教育 为农业院校提供多品类检测基准数据,支持算法研究及教学案例开发。 全链路覆盖 从田间作物(甜玉米、土豆)到加工原料(肉类、坚果),覆盖农业生产-加工全流程检测需求。 标注专业性 YOLO标注经多轮校验,边界框紧密贴合目标,支持复杂场景下的密集目标检测(如混合坚果分拣)。 场景多样性 包含自然光照、阴影遮挡、多角度拍摄等真实农业环境数据,强化模型鲁棒性。 高扩展性 兼容YOLOv5/v7/v8等主流框架,支持快速迁移至分类、计数等衍生任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值