Title: 机器学习三要素
category: 机器学习
tags: CS 机器学习 人工智能 深度学习
summary: 统计机器学习三要素, 模型+策略+算法, 主要出自李航的《统计学习方法》
致谢
本文来自以下内容:
- 李航《统计学习方法》
看过的人不用再看这篇, 全是概念而已。
接上一篇机器学习的主要类型
我是拒绝的,因为这三个要素写起来,跟照抄有什么区别, 怎么编写才合理,真是头痛。
机器学习方法=模型+策略+算法
模型
模型就是所要学习的条件概率分布或决策函数, 即 y = f(x) 或 P = P(Y|X)
我们知道函数有 系数(参数) 和 未知数(变量), 变量对应的是作为输入的数据, 所以机器学习主要是要求出函数(条件概率分布)的所有参数, 一般写成一个参数向量。
那么参数向量每个分量都有个“定义域”, n维向量取值于n维欧氏空间, 那这n维的定义域就称为 参数空间(parameter space)。
所有可能的决策函数或条件概率分布就组成了 假设空间(hypothesis space)
都是一些纯粹的概念, 会不会被人玩出花, 不知道。
损失函数总结
所以常见的损失函数就是以上四种:
- 0-1损失函数:
L(Y,f(X))={

本文深入探讨了机器学习的三大核心要素——模型、策略和算法,基于李航的《统计学习方法》。主要内容包括模型的定义、条件概率分布、参数空间和假设空间;介绍了几种常见的损失函数,如0-1损失、绝对损失、平方损失和对数损失;并概述了经验风险最小化和结构风险最小化的策略选择。最后提到了机器学习问题通常转化为最优化问题,但并未详述具体算法。
最低0.47元/天 解锁文章
193

被折叠的 条评论
为什么被折叠?



