C语言关于补码的解释及误区

加法器

计算机里面,只有加法器,没有减法器,所有的减法运算,都必须用加法进行。
即:减去某个数字(或者说加上某个负数)的运算,都应该研究如何用加法来完成。

模、补数
在日常生活当中,可以看到很多这样的事情:
把某物体左转 90 度,和右转 270 度,在不考虑圈数的条件下,最终的效果是相同的;
把分针倒拨 20 分钟,和正拨 40 分钟,在不考虑时针的条件下,效果也是相同的;
把数字 87,减去 25,和加上 75,在不考虑百位数的条件下,效果也是相同的;
……。
上述几组数字,有这样的关系:
  90 + 270 = 360
  20 + 40 = 60
  25 + 75 = 100
式中的 360、60 和 100,就是“模”(也可以理解成“进制”)。
式中的 90 和 270、20 和 40,以及 25 和 75,就是一对对“互补”的数字。

知道了“模”,求某个数字的“补数”,就是轻而易举的了:
如果模为 365,数字 120 的补数为:365 - 120 = 245。

用补数代替原数,可把减法转变为加法。出现的进位就是模,此时的进位,就应该忽略不计

二进制数的模
前面说过的十进制数 25 和 75,它们是 2 位数的运算,模是 100,即 1 的后面加上 2 个 0。
如果有 3 位数参加运算,模就是 1000,即 1 的后面加上 3 个 0。
这里的 1000,是十进制数的一千,可以写成 10^3,即 10 的 3 次方。
推论:有多少位数参加运算,模就是在 1 的后面加上多少个 0。

对于二进制数字,模也是这样推算。
如果是 3 位二进制数参加运算,模就是 1000,即 1 的后面加上 3 个 0;
那么当 8 位二进制数参加运算,模就是 1 0000 0000,即 1 的后面加上 8 个 0。
16 位二进制数参加运算,模可就大了,是 1 的后面加上 16 个 0。
注意:这里提到的 1、0,都是二进制数。
8 位二进制数的模可以按照十进制写成 2^8,即 256。
16 位数二进制数的模,就是 2^16,按照十进制,它就是 65536。

二进制数的补码
求二进制数的补数,目的是往计算机里面存放。
在计算机里面,存放的数字什么的,都称为机器码;那么二进制形式的补数,也就改称为补码了。
一般情况下,都是以 8 位二进制数来讨论补码,少数也有用 16 位数的。

计算时加上正数,是不需要进行求取补数的;只有进行减法(或者加上负数),才需要对减数求补数。
补码就是按照这个要求来定义的:正数不变,负数即用模减去绝对值。

已知一个数 X,其 8 位字长的补码定义为:

       (1)  X ;                 0 <= X <= +127 (正数和0的补码,就是该数字本身)
     (2)  2^8 -|X| ;    -128 <= X < 0
(负数的补码,就是用 1 0000 0000(2的8次方),减去该数字的绝对值)

例如 X = -126,其补码为 1000 0010,计算方法如下:

    1 0000 0000
   - 0111 
1110
 -----------
     1000 0010

可以看出,按照补码的定义来求补码,概念十分清晰,方法、步骤也是十分简单的。

应用补码进行计算
用补码计算:83-25=58。

    83  ---都变成补码,再用加法运算-->    0101 0011
  - 25  -> 1 0000 0000 - 0001 1001-> 
  +            1110 0111
 ----- 
                                         --------
    58  <--忽略进位1,结果就是正确的--[1] 
   0011 1010

(10-67)
     00001010
   +10111101
   =11000111  取反加1后为00111001,既-57
(21-16)
     00010101
   +11110000
   =00000101  既为5
(43-46)
    00101011
  +11010010
  =11111101   取反加1后为00000011,既为-3

计算结果如果超出了-128~+127的范围,结果将是错误的,这是没有办法纠正的。

应用补码进行计算,完全符合前面介绍的“用补数可把减法转换成加法”的做法,只要忽略进位(这个进位1,就是求补的时候,加进去的1 0000 0000中的1),结果就是正确的。

这些关于补数、补码的定义、方法、步骤,读者如果看懂了前面的文字,相信大家自己都可以总结出来。
那么为什么总有些网友要提出关于求取补码的问题呢?
在做而论道看来,就是因为很多教材和网文都在这个问题上“画蛇添足”。

关于补码的蛇足
补码出现后,后人又补充了不少“蛇足”:符号位、求反加一、原码、反码......。
下面的表格给出了一些 8 位数的补码。

--符号位
从这个表格中,可以看出特点:正数的最高位都是0,负数的最高位都是1。
这样一来,有人就把最高位理解成了符号位。说什么是规定的用0代表正号,......。并且郑重其事的补充说明:“符号位也参加运算”。真能忽悠!卖拐、卖车的都甘拜下风。
其实,前面说过的 补数 和 补码的定义式里面,根本就没有什么符号位
。这最高位的1、0是自然出现的,并不是由人来规定的。
--求反加一
负数补码的后面七位,也可以看出一个不完全的规律:它们和绝对值之间存在着“求反加一”的关系。
于是,又有人推出了这个不同于定义式的算法
--原码和反码
由于使用“求反加一”来求取补码,顺便又引出了 原码 和 反码 两个垃圾概念。

其实,“求反加一”的计算方法只是适用于计算二进制形式的补数,它并不是通用的。
并且把“求反加一”用于求-128的补码,有个溢出的现象,很多人都在这里被弄瘸了很长时间。
原码和反码也只不过是“人工”进行“
求反加一”时的中间过程,在计算机里面根本是不存在的,它们也就没有丝毫用处。

做而论道的建议:
求取补码,就按照定义的规定,负数采用“模减去绝对值”的方法来求,这是求补数的通用方法,适合于各种进制、各种大小的数字。
不要用求反加一的方法,也就不用理会原码和反码了,也不牵涉符号位的问题。
以后的计算,也就没有必要特殊说明:“符号位一起参加运算...”,因为根本就没有什么符号位。

如果把原码和反码、符号位等等垃圾概念,从计算机的书中删减掉,学习补码将会省力不少。

<think>好的,我现在需要回答用户关于C语言中绝对值的问题。首先,我要确认用户想知道的是如何在C语言中计算绝对值,以及相关的函数和注意事项。 首先,我应该回忆C语言中常用的绝对值函数。记得标准库stdlib.h里有abs()函数,用于整数类型,而math.h里有fabs()用于浮点数。另外,C99标准引入了更详细的函数如labs()、llabs()、fabsf()和fabsl(),分别处理长整型、长长整型以及float和long double类型。需要把这些函数列出来,并说明它们的头文件和参数类型。 接下来,可能需要提到使用这些函数时需要注意的地方。比如,math.h中的函数可能需要链接数学库,在编译时加上-lm选项。另外,直接使用条件运算符实现绝对值也是一个方法,虽然可能不如库函数高效,但有助于理解原理。 然后,我应该给出具体的例子,展示如何调用这些函数。比如,使用abs()计算整数的绝对值,fabs()处理浮点数,以及条件运算符的例子。同时,提醒用户注意数据类型的匹配,避免隐式转换带来的错误。 还需要考虑用户可能的误区,例如混淆不同函数的用途,或者忘记包含头文件导致编译错误。此外,C语言中的abs()函数对于负数如-2147483648可能有问题,因为补码表示的范围限制,这时候可能需要用更大的类型或者浮点数来处理。 最后,总结一下各个函数的适用场景,建议优先使用标准库函数,同时了解其限制。结构上要分点说明,确保清晰易懂。检查是否有遗漏的重要点,比如C99新增的函数是否常用,是否需要特别说明兼容性问题,但可能用户主要是基础应用,暂时不需要深入讨论版本差异。</think>在C语言中,计算绝对值主要通过标准库函数实现。以下是逐步说明: --- ### 一、整数绝对值函数 1. **函数名**:`abs()` - **头文件**:`#include <stdlib.h>` - **功能**:计算`int`类型整数的绝对值。 - **示例**: ```c int a = -5; int result = abs(a); // result = 5 ``` 2. **长整数扩展**: - `labs()`:处理`long int`类型(头文件同`abs()`)。 - `llabs()`:处理`long long int`类型(C99标准引入)。 --- ### 二、浮点数绝对值函数 1. **函数名**:`fabs()` - **头文件**:`#include <math.h>` - **功能**:计算`double`类型浮点数的绝对值。 - **示例**: ```c double b = -3.14; double result = fabs(b); // result = 3.14 ``` 2. **其他浮点类型**: - `fabsf()`:处理`float`类型(C99标准)。 - `fabsl()`:处理`long double`类型(C99标准)。 --- ### 三、注意事项 1. **编译选项**: 使用`math.h`中的函数时,需在编译命令末尾添加`-lm`以链接数学库: ```bash gcc program.c -o program -lm ``` 2. **数据溢出问题**: - 对于`int`类型的最小负数(如`-214748364
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值