Search a 2D Matrix
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3
, return true
.
Search a 2D Matrix
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3
, return true
.
class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int target) {
int m = matrix.size();
if(m < 1) return false;
int n = matrix[0].size();
int low = 0, high = m*n-1;
while(low<=high)
{
int mid = (low+high)/2;
int row = mid/n;
int col = mid%n;
if(target == matrix[row][col]) return true;
if(target > matrix[row][col]) low = mid + 1;
else high = mid - 1;
}
return false;
}
};
Set Matrix Zeroes
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.
Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?
class Solution {
public:
void setZeroes(vector<vector<int> > &matrix) {
if(matrix.size() < 1) return;
vector<int > col(matrix[0].size(),0);
vector<int > row(matrix.size());
for(int i = 0;i<matrix.size();i++)
{
for(int j = 0;j<matrix[0].size();j++)
{
if(matrix[i][j] == 0)
{
row[i] = 1;
col[j] = 1;
}
}
}
for(int i = 0;i<matrix.size();i++)
for(int j = 0;j<matrix[0].size();j++)
if(row[i] == 1 || col[j] == 1)
matrix[i][j] = 0;
}
};
Spiral Matrix
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.
For example,
Given the following matrix:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
You should return [1,2,3,6,9,8,7,4,5]
.
class Solution {
public:
vector<int> spiralOrder(vector<vector<int> > &matrix) {
vector<int> ret;
if(matrix.size()<1) return ret;
for(int i = 0;i<(min(matrix.size(),matrix[0].size())+1)/2;i++)
spiralOrder(ret,matrix,i);
return ret;
}
void spiralOrder(vector<int> &ret,vector<vector<int> > &matrix,int start)
{//左上到右上
int m = matrix.size(), n = matrix[0].size();
for(int i = start;i<n-start;i++)
ret.push_back(matrix[start][i]);
if(m - start*2 == 1) return;/!!!!!!
//右上到右下
for(int i = start+1;i<m-start;i++)
ret.push_back(matrix[i][n-start-1]);
if(n - start*2 == 1) return;!!!!!!
//右下到左下
for(int i = n-start-2;i>= start;i--)
ret.push_back(matrix[m-start-1][i]);
//右下到左上
for(int i = m-start-2;i> start;i--)
ret.push_back(matrix[i][start]);
}
};
Spiral Matrix II
Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.
For example,
Given n = 3
,
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
class Solution {
public:
vector<vector<int> > generateMatrix(int n) {
vector<vector<int> > ret(n,vector<int> (n));
int sum = 1;
for(int i = 0;i<(n+1)/2;i++)
generateMatrixCore(ret,sum,i);
return ret;
}
void generateMatrixCore(vector<vector<int> > &ret,int &sum,int start)
{//左上到右上
int n = ret.size();
for(int i = start;i<n-start;i++)
ret[start][i] = sum++;
if(n - start*2 == 1) return;
//右上到右下
for(int i = start+1;i<n-start;i++)
ret[i][n-start-1] = sum++;
//右下到左下
for(int i = n-start-2;i>= start;i--)
ret[n-start-1][i] = sum++;
//右下到左上
for(int i = n-start-2;i> start;i--)
ret[i][start] = sum++;
}
};