【杭电2015年12月校赛F】【二维DP】01 Matrix 大正方形内size为k的全1子正方形的个数

01 Matrix

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 636    Accepted Submission(s): 139


Problem Description
It's really a simple problem.  
Given a "01" matrix with size by n*n (the matrix size is n*n and only contain "0" or "1" in each grid), please count the number of "1" matrix with size by k*k (the matrix size is k*k and only contain "1" in each grid).
 

Input
There is an integer T (0 < T <=50) in the first line, indicating the case number.
Each test case begins with two numbers n and m (0<n, m<=1000), specifying the size of matrix and the query number.
Then n lines follow and each line contains n chars ("0" or "1").
Then m lines follow, each lines contains a number k (0<k<=n).
 

Output
For each query, output the number of "1" matrix with size by k*k.
 

Sample Input
  
  
2 2 2 01 00 1 2 3 3 010 111 111 1 2 2
 

Sample Output
  
  
1 0 7 2 2
 




【杭电2015年12月校赛F】【二维DP O(n^2)做法】01 Matrix 大正方形内size为k的全1子正方形的个数

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1010,M=0,Z=1e9+7,ms63=0x3f3f3f3f;
int casenum,casei;
int n,m;
char s[N][N];
int d[N][N];
int f[N];
int main()
{
    scanf("%d",&casenum);
    for(casei=1;casei<=casenum;++casei)
    {
		MS(f,0);
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;++i)scanf("%s",s[i]+1);
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=n;++j)
            {
				if(s[i][j]=='0')d[i][j]=0;
				else
				{
					int k=d[i-1][j-1];
					gmin(k,d[i-1][j]);
					gmin(k,d[i][j-1]);
					d[i][j]=k+1;
					++f[k+1];
				}
            }
        }
        for(int i=n;i>=2;--i)f[i-1]+=f[i];
        while(m--)
        {
            int k;
            scanf("%d",&k);
            printf("%d\n",f[k]);
        }
    }
    return 0;
}
/*
【题意】
T(50)组数据
每组数据给你一个n*n(1<=n<=1000)的01矩阵
同时有m(1<=m<=1000)个询问
对于每个询问,有尺寸k,让你求出,这个大的01矩阵中,
有多少个size为k*k的小矩阵,满足小矩阵的每个数字都为1。

【类型】
DP

【分析】
询问辣么多!
于是显然,我们直接预处理出每个size的矩形的个数就好啦。
然后怎么做呢?提供两种做法:

做法1,
首先你要会一个最基本的,利用二维前缀和 求二维子矩阵数值和的做法
利用这个做法,可以查询一个子矩阵是否为全1矩阵。
然后,我们枚举子矩阵的右下角位置,然后二分得到——
"以这个位置为右下角的,最大的全1正方形的size是多少"
如果size为l,意味着size={1~l}的全1正方形的计数会各多1个。

我们可以只计数++f[l];
然后我们把f[]从大到小扫描一遍,f[i-1]+=f[i]。
最后的f[k]就是大小为k的全1正方形的个数啦。

时间复杂度O(n^2 logn)

做法2,
我们用d[i][j]表示右下角为(i,j)的最大的全1正方形的size是多少。
那么直接有一个DP转移

if(s[i][j]=='1')d[i][j]=max(d[i-1][j],max(d[i][j-1],d[i-1][j-1]))+1;
else d[i][j]=0;

然后一样计数++f[d[i][j]]
最后扫描一遍就可以啦。

时间复杂度O(n^2)

*/

【杭电2015年12月校赛F】【二维DP 二分O(n^2logn)做法】01 Matrix 大正方形内size为k的全1子正方形的个数

#include<stdio.h>
#include<algorithm>
#include<ctype.h>
#include<string.h>
using namespace std;
int casenum,casei;
typedef long long LL;
const int N=1005;
int n,m;
char s[N][N];
int a[N][N];
int line[N];
int f[N];
int main()
{
    scanf("%d",&casenum);
    for(casei=1;casei<=casenum;++casei)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;++i)scanf("%s",s[i]+1);
        memset(line,0,sizeof(line));
        memset(f,0,sizeof(f));
        for(int i=1;i<=n;++i)
        {
            for(int j=1;j<=n;++j)
            {
                line[i]+=(s[i][j]=='1');
                a[i][j]=a[i-1][j]+line[i];
                if(s[i][j]=='1')
                {
                    int l=1;
                    int r=min(i,j);
                    while(l<r)
                    {
                        int mid=(l+r+1)>>1;
                        int sum=a[i][j]-a[i-mid][j]-a[i][j-mid]+a[i-mid][j-mid];
                        if(sum==mid*mid)l=mid;
                        else r=mid-1;
                    }
                    ++f[l];
                }
            }
        }
        for(int i=n;i>=2;--i)f[i-1]+=f[i];
        while(m--)
        {
            int k;
            scanf("%d",&k);
            printf("%d\n",f[k]);
        }
    }
    return 0;
}
/*
【题意】
T(50)组数据
每组数据给你一个n*n(1<=n<=1000)的01矩阵
同时有m(1<=m<=1000)个询问
对于每个询问,有尺寸k,让你求出,这个大的01矩阵中,
有多少个size为k*k的小矩阵,满足小矩阵的每个数字都为1。

【类型】
DP

【分析】
询问辣么多!
于是显然,我们直接预处理出每个size的矩形的个数就好啦。
然后怎么做呢?提供两种做法:

做法1,
首先你要会一个最基本的,利用二维前缀和 求二维子矩阵数值和的做法
利用这个做法,可以查询一个子矩阵是否为全1矩阵。
然后,我们枚举子矩阵的右下角位置,然后二分得到——
"以这个位置为右下角的,最大的全1正方形的size是多少"
如果size为l,意味着size={1~l}的全1正方形的计数会各多1个。

我们可以只计数++f[l];
然后我们把f[]从大到小扫描一遍,f[i-1]+=f[i]。
最后的f[k]就是大小为k的全1正方形的个数啦。

时间复杂度O(n^2 logn)

做法2,
我们用d[i][j]表示右下角为(i,j)的最大的全1正方形的size是多少。
那么直接有一个DP转移

if(s[i][j]=='1')d[i][j]=min(d[i-1][j],min(d[i][j-1],d[i-1][j-1]))+1;
else d[i][j]=0;

然后一样计数++f[d[i][j]]
最后扫描一遍就可以啦。

时间复杂度O(n^2)

*/


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值