cable cable cable
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 152 Accepted Submission(s): 131
Problem Description
Connecting the display screen and signal sources which produce different color signals by cables, then the display screen can show the color of the signal source.Notice that every signal source can only send signals to one display screen each time.
Now you have M display screens and K different signal sources( K≤M≤232−1 ). Select K display screens from M display screens, how many cables are needed at least so that **any** K display screens you select can show exactly K different colors.
Now you have M display screens and K different signal sources( K≤M≤232−1 ). Select K display screens from M display screens, how many cables are needed at least so that **any** K display screens you select can show exactly K different colors.
Input
Multiple cases (no more than
100
), for each test case:
there is one line contains two integers M and K .
there is one line contains two integers M and K .
Output
Output the minimum number of cables
N
.
Sample Input
3 2 20 15
Sample Output
4 90HintAs the picture is shown, when you select M1 and M2, M1 show the color of K1, and M2 show the color of K2. When you select M3 and M2, M2 show the color of K1 and M3 show the color of K2. When you select M1 and M3, M1 show the color of K1.
Source
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int main()
{
UL M, K;
while (~scanf("%llu%llu", &M, &K))
{
UL ans = K * (M - K + 1);
printf("%llu\n", ans);
}
return 0;
}
/*
【trick&&吐槽】
敢猜敢过。~没加,收获SB的 OLE
【题意】
有M个格子,有K个物品。我们希望在格子与物品之间连数量尽可能少的边,使得——不论是选出M个格子中的哪K个,都可以与K个物品恰好一一匹配。
【分析】
看样例可以猜答案,答案就是(M - K + 1) * K
从这个答案去猜测原因——
每个物品,都要向(M - K + 1)个格子连去一条边,我们会丢弃M - K个格子,但总会剩下一个格子是与这个物品连边的。
但是还要完成一一匹配的关系。
这个要怎么保证呢?如果让我们构造并输出一组方案怎么办?
连边方式就是:
1 -> [1, M - K + 1]
2 -> [2, 1 + M - K + 1]
3 -> [3, 2 + M - K + 1]
K -> [K, M]
这样不论选哪些格子,第一个物品总是能匹配第一个格子,第二个物品总是能匹配第二个格子…… 所以总能合法匹配!
【时间复杂度&&优化】
O(1)
*/