自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 机器学习——PCA(人脸识别)

通过本次基于PCA的人脸识别实验,我深入理解了主成分分析的核心原理及其在实际问题中的应用价值,以及PCA在图像领域的应用及其局限性,为后续学习更复杂模型奠定基础。

2025-06-10 19:42:31 911

原创 机器学习--SVM(支持向量机)垃圾邮件分类器

支持向量机(Support Vector Machine, SVM)是一种强大的监督学习算法,主要用于分类问题,也可用于回归任务。本实验成功实现了一个基于SVM的垃圾邮件分类器,可以总结出一些SVM的优缺点。

2025-06-02 21:03:44 1169

原创 机器学习一逻辑回归

逻辑回归(Logistic Regression)是机器学习中一种经典的分类算法,尽管名称中有“回归”,但它主要用于解决二分类问题(也可扩展至多分类)。1. 核心思想目的:预测一个样本属于某个类别的概率(介于0和1之间)。本质:通过线性回归结合一个非线性函数(如Sigmoid函数),将线性输出映射到概率。2. 关键组件Sigmoid函数决策边界当 σ(z)≥0.5 时预测为正类,否则为负类(阈值可调整)。3. 模型训练损失函数(交叉熵损失):优化方法通常使用梯度下降。

2025-05-19 22:27:21 923

原创 机器学习—朴素贝叶斯算法

优点1. 计算效率高,训练速度快朴素贝叶斯只需要计算特征的条件概率和先验概率,不涉及复杂的迭代优化(如梯度下降),因此训练速度极快,适合高维数据和大规模数据集。2. 对小规模数据表现良好即使训练数据较少,也能基于概率做出合理预测,不会像深度学习模型那样容易过拟合。3. 对缺失数据不敏感如果某个特征在训练集中未出现,可以使用拉普拉斯平滑(Laplace Smoothing)避免零概率问题,仍然能进行预测。4. 适用于高维数据。

2025-05-05 11:22:53 756

原创 机器学习实战-决策树

信息增益直接衡量特征对分类不确定性的减少。偏向取值多的特征(如"信贷情况"有3个值,信息增益较高)。信息增益率通过除以分裂信息,惩罚取值多的特征。更公平评估特征重要性,尤其适合C4.5算法。选择最优特征信息增益选择"有自己的房子"。信息增益率同样选择"有自己的房子"。(对比发现“有自己的房子”在两种方法中结果都为最大。

2025-04-21 22:42:29 901

原创 【机器学习】ROC曲线和PR曲线

ROC曲线(Receiver Operating Characteristic Curve)和PR曲线(Precision-Recall Curve)是评估二分类模型性能的常用工具,尤其在样本分布不平衡时表现不同特点。1. ROC曲线(Receiver Operating Characteristic Curve)定义ROC曲线是一种用于评估二分类模型性能的图形化工具,它通过绘制**真正例率(TPR, True Positive Rate)和。

2025-04-07 21:09:57 1157

原创 基于K近邻算法的分类器的实现(海伦约会)

K-近邻算法(K-Nearest Neighbors, KNN)是一种基本的分类与回归方法,属于监督学习范畴。它的工作原理是在特征空间中寻找与新样本距离最近的K个训练样本点,并根据这些邻近点的信息来预测新样本的类别。在分类任务中,通常采用多数表决规则,即选择K个最近邻中出现次数最多的类别标签作为预测结果;而在回归任务中,则可以使用平均法,即取K个最近邻的目标值的平均数作为预测结果。实验结果如图:由上图可知,当我们输入数据之后,即可知道该对象对海伦的吸引力。

2025-03-25 00:38:24 736

原创 VScode以及Anaconda的安装

它内置了对 JavaScript、TypeScript 和 Node.js 的支持,并通过丰富的扩展生态系统支持其他语言(如 C++、C#、Java、Python、PHP、Go)和运行时(如 .NET 和 Unity)。它不仅仅是一个 Python 解释器,更是一个包含了众多工具和库的综合平台,为数据科学家和开发者提供了一站式的解决方案。进入此界面之后,点击Download for Windows进行下载,下载完成后双击此文件出现以下界面。填写你的邮箱地址,之后邮箱里会发一个下载链接,点开后点击下载即可。

2025-03-09 01:21:52 611

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除