流形值数据的变分正则化方法
1 单变量Mumford - Shah和Potts问题
1.1 单变量Mumford - Shah正则化
单变量Mumford - Shah正则化可使用动态规划方法实现。以正矩阵的Cartan - Hadamard流形为例,该方法能在去除噪声的同时保留信号的跳跃。在图2.8中,展示了原始信号、添加Rician噪声的数据以及正则化后的信号。
在文献中,牛顿法也被用于解决此问题。梯度下降法收敛速度较快,多数情况下5 - 10次迭代就足够。对于一般的 $p \neq 1$,梯度下降法同样适用。当 $p = 1$ 时,相当于考虑固有中位数和固有绝对偏差,此时可应用次梯度下降法。
为加快动态规划的速度,可使用前一次的输出作为初始化。具体而言,在计算数据 $f_{l + 1:r}$ 的均值迭代时,可将已计算的 $f_{l:r}$ 的均值作为初始猜测。数据项越多,即 $r - l$ 越大,这种猜测通常越准确,能减少所需的迭代次数。
1.2 理论保证
在Cartan - Hadamard流形中,动态规划方案能为单变量Mumford - Shah问题(2.19)和离散Potts问题(2.21)产生全局最小解。
1.3 流程图示
graph LR
A[原始信号] --> B[添加Rician噪声]
B --> C[动态规划正则化]
C --> D[正则化后信号]