机器学习中的概率模型与分类方法
在机器学习领域,概率模型和分类方法是非常重要的组成部分。下面将详细介绍相关的概率模型以及分类问题的解决方法。
1. 指数族概率模型
指数族概率模型在机器学习中应用广泛,特别是广义线性模型(GLM)。选择合适的连接函数 $g(·)$ 可以得到 GLM,这种选择被称为典范连接函数(或其逆函数)。例如,线性回归模型 $p(t|x, w) = N(t|w^T φ(x), σ^2)$ 就是具有典范连接函数的 GLM。
1.1 最大熵性质
指数族分布具有最大熵性质,这为采用该类模型提供了有力的动机,同时也揭示了自然参数和均值参数之间的关系。具体来说,分布 $p(x|η)$ 在满足约束条件 $E_{x∼p(x)}[u_k(x)] = µ_k$($k = 1, …, K$)的所有分布 $p(x)$ 中具有最大熵。从数学角度看,它解决了如下优化问题:
$$
\max_{p(x)} H(p) \text{ s.t. } E_{x∼p(x)} [u_k(x)]=µ_k \text{ for } k = 1, …, K.
$$
每个自然参数 $η_k$ 是与第 $k$ 个约束相关的最优拉格朗日乘子。这意味着,如果关于数据 $x$ 的唯一可用信息是给定函数 $u_k(x)$ 的均值,那么概率模型 $p(x|η)$ 可以被解释为在给定约束下对数据编码最少额外信息的“最随机”分布,符合最大熵原理。
1.2 能量基模型
能量基模型是指数族的一种推广,其形式为:
$$
p(x|η) = \frac{1}{Z(η)} \exp \left( - \sum_{