题目-过河卒

题目描述

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式:

一行四个数据,分别表示B点坐标和马的坐标。

输出格式:

一个数据,表示所有的路径条数。

输入输出样例

输入样例#1:

6 6 3 3

输出样例#1:

6

说明

结果可能很大!

题目分析

1,马走日,即“日”字对角线的一个点。不熟悉的百度下图示,好理解。

2,要求路线的数目,根据卒的走法,只有向右或向上(即向下,看怎样画图)两种走法,即一个点的上面或右面不是马或马的控点,即为一条路线,若两个方向都可走,路径加一,若两个方向都为马的控点,则路径减一。

解题思路

1,要求路线的数目,根据卒的走法,只有向右或向上(即向下,看怎样画图)两种走法,即一个点的上面或右面不是马或马的控点,即为一条路线,若两个方向都可走,路径加一,若两个方向都为马的控点,则路径减一。(思路对,但很难实现)

2,将思路1换个方式表达,另设一个与棋盘相同的数组,每点对应位置存放从(0,0)点到达该点的路径数目,

实际解题

Bug.1:按照思路1写,写不出来。。因为如果按分支写的话,则找不到“该点”的表示方法,按行列逐个枚举肯定不行,递归吗?终止条件若设为末尾点,则经过马的控点的都走不到末尾点,,越想越乱,放弃。换思路2。

Bug.2:马的控点少设一个,它本身,死活不对,最后将棋盘输出,发现错误。

Ac.1:

 代码:

#include<bits/stdc++.h>
using namespacestd;
long longa[25][25],b[25][25];
void horse(intx,int y)
{
    a[x][y]=1;
    a[x-2][y-1]=1;
    a[x-2][y+1]=1;
    a[x-1][y-2]=1;
    a[x-1][y+2]=1;
    a[x+1][y-2]=1;
    a[x+1][y+2]=1;
    a[x+2][y-1]=1;
    a[x+2][y+1]=1;
}

int main()
{
   int bx,by,mx,my;
   cin>>bx>>by>>mx>>my;
    horse(mx+1,my+1);//马走日,防止数组越界,下标为负数
//for(inti=1;i<=bx+1;i++)
//{
//    for(int j=1;j<=by+1;j++)
//        cout<<a[i][j]<<"  ";
//    cout<<endl;
//}
    b[1][1]=1;
    for(int i=1;i<=bx+1;i++)
        for(int j=1;j<=by+1;j++)
        {
           if((a[i][j]!=1)&&(b[i][j]==0))
            {
                b[i][j]=b[i-1][j]+b[i][j-1];//卒的两种走法
            }
        }
//cout<<endl;
//for(inti=1;i<=bx+1;i++)
//{
//    for(int j=1;j<=by+1;j++)
//    {
//        cout<<b[i][j]<<"  ";
//    }
//    cout<<endl
//}
    cout<<b[bx+1][by+1];
    return 0;
}

Ps:

1,存放路径的数组要用 long long 型,真的可能很大。

2,如果以数组表示马控卒走图,考虑马的控点的越界问题。

3,路径从(0,0)点开始时要设为1,不然路径永远是0。



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值