整数划分(四)

碰着一道区间dp,看着不难,就是不明白,强制性输出,明白一丢丢:

原代码链接:https://blog.csdn.net/my_sunshine26/article/details/77141398


【题意】

给出一个数n,要求在n的数位间插入(m-1)个乘号,将n分成了m段,求这m段的最大乘积。

 

原代码:

#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a))
#define rush() int T;scanf("%d",&T);while(T--)
 
typedef long long ll;
const int maxn = 25;
const ll mod = 1e9+7;
const ll INF = 1e18;
const double eps = 1e-9;
 
int m;
char s[maxn];
ll dp[maxn][maxn];
ll num[maxn][maxn];
 
int main()
{
    rush()
    {
        scanf("%s%d",s+1,&m);
        mst(dp,0);
        int len=strlen(s+1);
        for(int i=1;i<=len;i++)
        {
            num[i][i]=s[i]-'0';
            for(int j=i+1;j<=len;j++)
            {
                num[i][j]=num[i][j-1]*10+s[j]-'0';
            }
        }
        for(int i=1;i<=len;i++)
        {
            dp[i][0]=num[1][i];
        }
        for(int j=1;j<m;j++)
        for(int i=j+1;i<=len;i++)
        for(int k=j;k<i;k++)
        {
            dp[i][j]=max(dp[i][j],dp[k][j-1]*num[k+1][i]);
        }
        printf("%lld\n",dp[len][m-1]);
    }
    return 0;
}

代码牛皮*:

#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#include<iostream>

using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a))
#define rush() int T;scanf("%d",&T);while(T--)

typedef long long ll;
const int maxn = 25;
const ll mod = 1e9+7;
const ll INF = 1e18;
const double eps = 1e-9;

int m;
char s[maxn];
ll dp[maxn][maxn];
ll num[maxn][maxn];
//num[i][j]代表数值,从char转换成long long 类型,

int main()
{
    rush()
    {
        scanf("%s%d",s+1,&m);
        mst(dp,0);
        int len=strlen(s+1);
        for(int i=1;i<=len;i++)
        {
            num[i][i]=s[i]-'0';
            for(int j=i+1;j<=len;j++)
            {
                num[i][j]=num[i][j-1]*10+s[j]-'0';
cout<<"    num["<<i<<"]["<<j<<"]="<<num[i][j]<<endl;
            }
        }

        for(int i=1;i<=len;i++){
            dp[i][0]=num[1][i];
        }

        for(int j=1;j<m;j++){//m段,m-1个乘号
cout<<"  j="<<j<<endl;
            for(int i=j+1;i<=len;i++){//第一位到第i位共插入j个乘号后乘积的最大值
cout<<"     i="<<i<<endl;
                for(int k=j;k<i;k++){
cout<<"        k="<<k<<endl;

cout<<"            dp["<<i<<"]["<<j<<"]="<<dp[i][j]<<endl;
                    dp[i][j]=max(dp[i][j],dp[k][j-1]*num[k+1][i]);
cout<<"            dp["<<k<<"]["<<j-1<<"]*num["<<k+1<<"]["<<i<<"]="<<dp[k][j-1]*num[k+1][i]<<endl;

cout<<"         dp["<<i<<"]["<<j<<"]="<<dp[i][j]<<endl;
                }
            }
        }
        printf("%lld\n",dp[len][m-1]);
    }
    return 0;
}

运行结果:

样例:

样例输入

2

111 2

1111 2

样例输出

11

121

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值