1,java中的Scanner类用法:
用Scanner类
import java.util.Scanner;
public static void main(String [] args) {
Scanner sc = new Scanner(System.in);
System.out.println("请输入你的姓名:");
String name = sc.nextLine();
System.out.println("请输入你的年龄:");
int age = sc.nextInt();
System.out.println("请输入你的工资:");
float salary = sc.nextFloat();
System.out.println("你的信息如下:");
System.out.println("姓名:"+name+"\n"+"年龄:"+age+"\n"+"工资:"+salary);
}
这段代码已经表明,Scanner类不管是对于字符串还是整型数据或者float类型的变量,只需做一点小小的改变,就能够实现功能!无疑他是最强大的!
但是,在使用第三种输入方法的时候有一个需要注意的地方,就是nextLine()函数,在io包中有一个和他功能一样的函数我next()函数,他们的功能一样,但是在实现上有什么差别呢,请看下面代码:
public static void main(String [] args) {
Scanner sc = new Scanner(System.in);
System.out.println("请输入你的年龄:");
int age = sc.nextInt();
System.out.println("请输入你的姓名:");
String name = sc.nextLine();
System.out.println("请输入你的工资:");
float salary = sc.nextFloat();
System.out.println("你的信息如下:");
System.out.println("姓名:"+name+"\n"+"年龄:"+age+"\n"+"工资:"+salary);
}
这段代码和上边实现输入方法给出的例子代码区别在于,这段代码先执行nextInit()再执行nextLine(),而上述的例子是先执行nextLine(),再执行nextInit(),当你在运行着两段代码的时候你会发现第三种方法的例子可以实现正常的输入,而这段代码却在输入年龄,敲击enter键后,跳过了输入姓名,直接到了输入工资这里,(可以自己运行代码看看)这是为什么呢?其实,在执行nextInit()函数之后,敲击了enter回车键,回车符会被nextLine()函数吸收,实际上是执行了nextLine()函数吸收了输入的回车符(并不是没有执行nextLine函数),前面讲到和nextLine()功能一样的函数next(),他们的区别就在于:next()函数不会接收回车符和tab,或者空格键等,所以在使用nextLine()函数的时候,要注意敲击的回车符有个被其吸收,导致程序出现BUG!!!
最后小小的总结一下next()和nextLine()的区别:
在java中,next()方法是不接收空格的,在接收到有效数据前,所有的空格或者tab键等输入被忽略,若有有效数据,则遇到这些键退出。nextLine()可以接收空格或者tab键,其输入应该以enter键结束。
2,运行时的BUG一号:
网上有针对于它的解决办法,不过没学会,将整个文件转移到另一个常用的写java的地方去,再用IDEA打开,就o鸡儿k了。
3,java中的开方函数
java中有一个Math类里面很多静态的方法,都是一些常见的数学公式的实现,例如求平方根的Math.sqrt(n),求a的b次方Math.pow(a, b),求绝对值Math.abs(n)等很多。下面是一些演示。
public class MathTest
{
public static void main(String[] args)
{
int n = 16;
System.out.println(Math.sqrt(n));
System.out.println(Math.pow(2, 3));
System.out.println(Math.abs(-4));
System.out.println(Math.log10(100));
}
}
开N次方:
import java.text.DecimalFormat;
public class Test82 {
public static void main(String[] args) {
double y=0;
double x=512;
int n=3;
y=java.lang.StrictMath.pow(x,1.0/n);
DecimalFormat bd=new DecimalFormat("########");//把double四舍五入取整
System.out.println(bd.format(y));
}
}
4,java中定义常量
用final修饰符
在Java语言中,主要是利用final关键字来定义常量。当常量被设定后,一般情况下就不允许再进行更改。如可以利用如下的形式来定义一个常量:final double PI=3.1315。在定义这个常量时,需要注意如下内容:
一是常量在定义的时候,就需要对常量进行初始化。也就是说,必须要在常量声明时对其进行初始化。都跟局部变量或者成员变量不同。当在常量定义的时候初始化过后,在应用程序中就无法再次对这个常量进行赋值。如果强行赋值的话,会跳出错误信息,并拒绝接受这一个新的值。
二是final关键字使用的范围。这个final关键字不仅可以用来修饰基本数据类型的常量,还可以用来修饰对象的引用或者方法。如数组就是一个对象引用。为此可以使用final关键字来定义一个常量的数组。这就是Java语言中一个很大的特色。一旦一个数组对象被final关键字设置为常量数组之后,它只能够恒定的指向一个数组对象,无法将其改变指向另外一个对象,也无法更改数组中的值。
三是需要注意常量的命名规则。不同的语言,在定义变量或者常量的时候,都有自己一套编码规则。这主要是为了提高代码的共享程度与提高代码的易读性。在Java语言中,定义常量的时候,也有自己的一套规则。如在给常量取名的时候,一般都用大写字符。在Java语言中,大小写字符是敏感的。之所以采用大写字符,主要是跟变量进行区分。虽然说给常量取名时采用小写字符,也不会有语法上的错误。但是,为了在编写代码时能够一目了然的判断变量与常量,最好还是能够将常量设置为大写字符。另外,在常量中,往往通过下划线来分隔不同的字符。而不想对象名或者类名那样,通过首字符大写的方式来进行分隔。这些规则虽然不是强制性的规则,但是为了提高代码友好性,方便开发团队中的其他成员阅读,这些规则还是需要遵守的。没有规矩,不成方圆。
总之,Java开发人员需要注意,被定义为final的常量需要采用大写字母命名,并且中间最好使用下划线作为分隔符来进行连接多个单词。在定义final的数据不论是常量、对象引用还是数组,在主函数中都不可以改变。否则的话,会被器拒绝并提示错误信息。
由于Javal是面向对象的语言,所以在定义常量的时候还有与其它编程语言不同的地方。如一段程序代码从到最后执行,即使需要经过两个过程,分别为代码的装载与对象的建立。不同的过程对于常量的影响是不同的。现在假设有如下的代码:
Private static Random rd1=new Random; //实例化一个随机数生成对象。
Private final int int1=rd1.nestInt; //生成随机数并赋值给常量int1
Private static final int int2=rd1.nestInt; //生成随机数并赋值给常量int2
这上面的语句的大致含义是,通过Java语言提供的随机数类对象,生成随机数。并把生成的随机数赋值给常量int1与int2。细心的读者会发现,虽然同样是赋值语句,但是以上两个语句中有一个细小的差别,即在第二条语句中多了一个关键字static。关于关键字的用途,在以前的文章中也有谈到过。这个是一个静态的概念。即当利用这个关键字来修饰一个变量的时候,在创建对象之前就会为这个变量在内存中创建一个存储空间。以后创建对对象如果需要用到这个静态变量,那么就会共享这一个变量的存储空间。也就是说,在创建对象的时候,如果用到这个变量,那么系统不会为其再分配一个存储空间,而只是将这个内存存储空间的地址赋值给他。如此做的好处就是可以让多个对象采用相同的初始变量。当需要改变多个对象中变量值的时候,只需要改变一次即可。从这个特性上来说,其跟常量的作用比较类似。不过其并不能够取代常量的作用。
那么以上两条语句有什么差别吗?我们首先来看Private final int int1=rd1.nestInt这条语句。虽然int1也是一个常量,但是其是在对象建立的时候初始化的。如现在需要创建两个对象,那么需要对这个变量初始化两次。而在两次对象初始化的过程中,由于生成的随机数不同,所以常量初始化的值也不同。最后导致的结果就是,虽然int1是常量,但是在不同对象中,其值有可能是不同的。可见,定义为final的常量并不是恒定不变的。因为默认情况下,定义的常量是在对象建立的时候被初始化。如果在建立常量时,直接赋一个固定的值,而不是通过其他对象或者函数来赋值,那么这个常量的值就是恒定不变的,即在多个对象中值也使相同的。但是如果在给常量赋值的时候,采用的是一些函数或者对象,那么每次建立对象时其给常量的初始化值就有可能不同。这往往是人员不原意看到的。有时候人员希望建立再多的对象,其在多个对象中引用常量的值都是相同的。
要是现这个需求的话,有两个方法。一是在给常量赋值的时候,直接赋予一个固定的值,如abcd等等。而不是一个会根据环境变化的函数或者对象。像生成随机数的对象,每次运行时其结果都有可能不能。利用这个对象来对常量进行初始化的时候,那么结果可能每次创建对象时这个结果都有可能不同。最后这个常量只能够做到在一个对象内是恒定不变的,而无法做到在一个应用程序内是恒定不变的。另外一个方法就是将关键字static与关键字final同时使用。一个被定义为final的对象引用或者常量只能够指向唯一的一个对象,不可以将他再指向其他对象。但是,正如上面举的一个随机数的例子,对象本身的内容的值是可以改变的。为了做到一个常量在一个应用程序内真的不被更改,就需要将常量声明为staitc final的常量。这是什么意思呢?正如上面所说的,当执行一个应用程序的时候,可以分为两个步骤,分别为代码装载与对象创建。为了确保在所有情况下应用程序还能够得到一个相同值的常量,那么就最好告诉编译器,在代码装载的时候就初始化常量的值。然后在后续创建对象的时候,只引用这个常量对象的地址,而不对其再进行再次初始化。就如同Private static final int int2=rd1.nestInt这种形式来定义常量。如此,在后续多次创建对象后,这个常量int2的值都是相同的。因为在创建对象时,其只是引用这个常量,而不会对这个常量再次进行初始化。
由于加上这个static关键字之后,相当于改变了常量的作用范围。为此程序开发人员需要了解自己的需求,然后选择是否需要使用这个关键字。在初始化常量的时候,如果采用函数或者对象来初始化常量,可以预见到在每次初始化这个常量时可能得到不同的值,就需要考虑是否要采用这个static关键字。一般情况下,如果只需要保证在对象内部采用这个常量的话,那么这个关键字就可有可无的。但是反过来,如果需要在多个对象中引用这个常量,并且需要其值相同,那么就必须要采用static这个关键字了。以确保不同对象中都只有一个常量的值。或者说,不同对象中引用的常量其实指向的是内存中的同一块区域。
5,科学计数法
https://www.cnblogs.com/zhanyao/p/6583207.html
6,除欧几里得算法外求两数最大公因子--更相减损术
“更相减损术”可以用来求两个数的 最大公约数,
(如果需要对分数进行约分,那么)可以折半的话,就折半(也就是用2来约分)。如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分。
方法步骤:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是 最大公约数。求“等数”的办法是“更相减损”法。
例1、用更相减损术求98与63的 最大公约数。
解:由于63不是偶数,把98和63以大数减小数,并 辗转相减:
98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98和63的最大公约数等于7。
例2、用更相减损术求260和104的最大公约数。
解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。
此时65是奇数而26不是奇数,故把65和26 辗转相减:
65-26=39
39-26=13
26-13=13
所以,260与104的 最大公约数等于13乘以第一步中约掉的两个2,即13*2*2=52。
比较:
更相减损术和辗转相除法的主要区别在于前者所使用的运算是“减”,后者是“除”。从算法思想上看,两者并没有本质上的区别,但是在计算过程中,如果遇到一个数很大,另一个数比较小的情况,可能要进行很多次减法才能达到一次 除法的效果,从而使得算法的 时间复杂度退化为O(N),其中N是原先的两个数中较大的一个。相比之下,辗转相除法的时间复杂度稳定于O(logN)。
Stein算法
更相减损法有点类似于求 最大公约数的 Stein算法。在更相减损法中,若两个是偶数则同除以2,结果乘以2。如果增加一个判断,若为一奇一偶则偶数除以2,结果不变,若为两个奇数才相减,这样就变成了目前计算大整数最大公约数的非常好的一个算法,Stein算法。
在上面的实例中,下面是更相减损法与Stein算法的比较,从中可以发现两种算法的相似性。
更相减损法:操作 | 甲数 | 乙数 | Stein算法:操作 | 甲数 | 乙数 |
| 98 | 63 |
| 98 | 63 |
98-63=35 | 63 | 35 | 98是偶数,除以2 | 49 | 63 |
63-35=28 | 35 | 28 | 都是奇数,63-49=14 | 49 | 14 |
35-28=7 | 28 | 7 | 14是偶数,除以2 | 49 | 7 |
28-7=21 | 7 | 21 | 49-7=42 | 42 | 7 |
21-7=14 | 7 | 14 | 42是偶数,除以2 | 21 | 7 |
14-7=7 | 7 | 7 | 21-7=14 | 14 | 7 |
7-7=0 | 7 | 0 | 14是偶数,除以2 | 7 | 7 |
|
|
| 7-7=0 | 7 | 0 |
“可半者半之”
通常认为,算法描述中的第一步“可半者半之”是指分子 分母皆为偶数的时候,首先用2约简。因为更相减损术原先是专用来 约分,所以并不用考虑最后计算结果时,要把第一步中约掉的若干个2再乘回去。加入这一步的原因可能是,分母、分子皆为偶数是在分数加减运算的结果中比较容易遇到的一种情况,用这种方法有可能减少数字的位数,简化计算。
当然,省略这个以2约简的步骤,也能得到正确的答案。
C语言
int gcd(int a, int b){
while(a != b){
if(a > b)
a -= b;
else
b -= a;
}
return a;
}
7,生成java中的随机数
生成指定范围内的随机数
这个是最常用的技术之一。程序员希望通过随机数的方式来处理众多的业务逻辑,测试过程中也希望通过随机数的方式生成包含大量数字的测试用例。问题往往类似于:
如何随机生成 1~100 之间的随机数,取值包含边界值 1 和 100。
或者是:
如何随机生成随机的3位整数?
等等……
以 Java 语言为例,我们观察其 Random 对象的 nextInt(int) 方法,发现这个方法将生成 0 ~ 参数之间随机取值的整数。例如(假设先有 Random rand = newRandom();,下同):
rand.nextInt(100);
这行代码将生成范围0~100 之间的随机数,有趣的是,取值可能为 0 ,但不可能为 100。我们用中学数学课学习的区间表示法,表示为:[0, 100)。
那么如果要获得区间 [1~100]的随机数,该怎么办呢?稍微动动脑筋就可以想到:区间 [0, 100) 内的整数,实际上就是区间 [0, 99]。因为最大边界为100,可惜不能等于100,因此最大可能产生的“整数”就是99。
既然rand.nextInt(100) 获得的值是区间 [0, 99],那么在这个区间左右各加 1,就得到了区间 [1, 100]。因此,代码写成:
rand.nextInt(100)+ 1;
即可。运行下面的代码,将获得 [1, 100] 的 10 个取值。
import java.util.Random;
public class Test {
public static void main(String[] args){
Random rand = new Random();
for(int i=0; i<10; i++) {
System.out.println(rand.nextInt(100) + 1);
}
}
}
同理,很容易知道如果要获得随机两位整数,代码写成:rand.nextInt(90) + 10;
你一定很惊讶,为什么是这么写出来的。其实,在 nextInt() 方法中作为参数的数字 90 表示:你希望生成的随机数的所有取值的可能性的数量(在本命题中,两位整数取值为 [10, 99],共90个数);加好后面的数字 10 ,表示区间的最小取值。
你可以验证下,按照这样理解,[1, 100] 的随机数,是不是应该写成rand.nextInt(100) + 1 。千万不要把参数 100 理解为最大取值。只是区间 [1, 100] 正好从 1 开始,所以最大取值和取值可能性数量正好同为 100。
因此,
生成随机三位数的代码为:
rand.nextInt(900)+ 100;
生成区间 [64,128] 中随机值的代码为:
rand.nextInt(65)+ 64;
取值可能性的数量是如何计算出来的呢?当然是 最大取值-最小取值+1 ,所以,有最终公式如下:
// For Java
int randNumber =rand.nextInt(MAX - MIN + 1) + MIN; // randNumber 将被赋值为一个 MIN 和 MAX 范围内的随机数