给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
思路:
绘制一个股价的折线图,可以判断应该在拐点处进行交易:峰值卖出、谷点买入。另外考虑一下可能几天股价相同的情况,再对头天是涨还是跌判断一下,以及最后一天判断一下是否清仓,于是有了下面第一版的代码。
AC代码 O(n):
class Solution {
public:
int maxProfit(vector<int>& prices) {
int buy=-1,sum=0;
if(prices.size()==1) return sum;
if(prices[1]>=prices[0]) buy=prices[0];
for(int i=1;i<prices.size()-1;i++){
if(((prices[i-1]<=prices[i] && prices[i]>prices[i+1])
||(prices[i-1]<prices[i] && prices[i]>=prices[i+1]))
&& buy!=-1){
sum += prices[i]-buy;
buy=-1;
}else if(((prices[i-1]>=prices[i] && prices[i]<prices[i+1])
||(prices[i-1]>prices[i] && prices[i]<=prices[i+1]))
&& buy==-1){
buy=prices[i];
}
}
if(buy!=-1) sum+=prices[prices.size()-1]-buy;
return sum;
}
};
简化版本 O(n):
AC以后看题解发现别人的代码好短哦,仔细看了一下,原来并不限制一天只能进行一次交易(买入or卖出),那问题就简化了很多,不用判断那么多情况了,直接第二天比第一天价格高就加进利润里即可。简化代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int sum=0;
for(int i=0;i<prices.size()-1;i++)
if(prices[i+1]>prices[i])
sum+=prices[i+1]-prices[i];
return sum;
}
};