函数可微分的充分条件的证明

对某几个跳过的步骤进行了补充说明

bf52f2d23fd94acb9da79285642dfacd.png

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
微分方程是指可以写成形式为 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 的方程,其中 $M$ 和 $N$ 是关于 $x$ 和 $y$ 的可微函数。 充分性证明: 如果 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 是全微分方程,那么存在一个函数 $u(x,y)$ 满足: $$\frac{\partial u}{\partial x}=M(x,y),\quad\frac{\partial u}{\partial y}=N(x,y)$$ 因此,我们可以通过对 $u(x,y)$ 求偏导数来得到: $$\mathrm{d}u=\frac{\partial u}{\partial x}\mathrm{d}x+\frac{\partial u}{\partial y}\mathrm{d}y=M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y$$ 这意味着 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 可以被写成 $\mathrm{d}u=0$ 的形式,也就是说,它是一个恰当的微分方程。 必要性证明: 如果 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 是一个恰当的微分方程,那么存在一个函数 $u(x,y)$ 满足: $$\frac{\partial u}{\partial x}=M(x,y),\quad\frac{\partial u}{\partial y}=N(x,y)$$ 我们可以通过偏导数的定义来证明这一点。因为 $M(x,y)$ 和 $N(x,y)$ 是可微的,所以它们是连续的,那么根据多元微积分中的 Schwarz 定理,我们可以得到: $$\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial M(x,y)}{\partial y}=\frac{\partial N(x,y)}{\partial x}=\frac{\partial^2 u}{\partial y\partial x}$$ 这意味着 $\frac{\partial^2 u}{\partial x\partial y}-\frac{\partial^2 u}{\partial y\partial x}=0$,也就是说,$u(x,y)$ 是一个二阶连续可微函数。因此,我们可以使用 Clairaut 定理来得到: $$\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial^2 u}{\partial y\partial x}$$ 因此,我们得到: $$\frac{\partial M(x,y)}{\partial y}=\frac{\partial N(x,y)}{\partial x}$$ 这表明 $M(x,y)\mathrm{d}x+N(x,y)\mathrm{d}y=0$ 是一个全微分方程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值