SQL快马加鞭

SQL快马加鞭

  我们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充分的连接条件和不可优化的 where子句。在对它们进行适当的优化后,其运行速度有了明显的提高!下面我将从这 三个方面分别进行总结。

  为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均表示为(<1秒)。

一、不合理的索引设计
例:表record有620000行,试看在不同的索引下,下面几个SQL的运行情况:

1.在date上建有一个非群集索引
select count(*) from record where date>'19991201' and date<'19991214'
and amount>2000 --(25秒)
select date, sum(amount) from record group by date --(55秒)
select count(*) from record where date>'19990901' and place in
('BJ','SH') --(27秒)

分析:date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。

2.在date上的一个群集索引
select count(*) from record where date>'19991201' and date<'19991214'
and amount>2000 --(14秒)
select date,sum(amount) from record group by date --(28秒)
select count(*) from record where date>'19990901' and place in
('BJ','SH') --(14秒)

分析:在群集索引下,数据在物理上按顺序排在数据页上,重复值也排列在一起,因而在范围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范围扫描,提高了查询速度。

3.在place、date、amount上的组合索引
select count(*) from record where date>'19991201' and date<'19991214'
and amount>2000 --(26秒)
select date,sum(amount) from record group by date --(27秒)
select count(*) from record where date>'19990901' and place in
('BJ’,'SH') --(<1秒)

分析:这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组合索引中,形成了索引覆盖,所以它的速度是非常快的。

4.在date、place、amount上的组合索引
select count(*) from record where date>'19991201' and date<'19991214'
and amount>2000 --(<1秒)
select date, sum(amount) from record group by date --(11秒)
select count(*) from record where date>'19990901' and place in
('BJ','SH') --(<1秒)

分析:这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。

5.总结
缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要建立在对各种查询的分析和预测上。一般来说:有大量重复值且经常有范围查询(between, >, <,>=, <=)和orderby、groupby发生的列,可考虑建立群集索引。经常同时存取多列,且每列都含有重复值可考虑建立组合索引。组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。

二、不充分的连接条件
例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况:

select sum(a.amount) from account a, card b where
a.card_no=b.card_no --(20秒)

将SQL改为:

select sum(a.amount) from account a, card b where a.card_no=b.card_no
and a.account_no = b.account_no --(<1秒)

分析:在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其I/O次数可由以下公式估算为:

外层表account上的22541页 + (外层表account的191122行×内层表card上对应外层表第一行所要查找的3页) = 595907次I/O

在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其I/O次数可由以下公式估算为:

外层表card上的1944页+(外层表card的7896行×内层表account上对应外层表每一行所要查找的4页) = 33528次I/O

可见,只有充分的连接条件,真正的最佳方案才会被执行。

总结:多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充分考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数×内层表中每一次查找的次数来确定,乘积最小为最佳方案。查看执行方案的方法——用setshowplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想看更详细的信息,需 用sa角色执行dbcc(3604,310,302)。
 
三、不可优化的where子句
例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:

select * from record where substring(card_no,1,4)='5378' --(13秒)
select * from record where amount/30<1000 --(11秒)
select * from record where convert(char(10),date,112)='19991201' --
(10秒)

分析:where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:

select * from record where card_no like '5378%' --(<1秒)
select * from record where amount<1000*30 --(<1秒)
select * from record wheredate='1999/12/01' --(<1秒)

你会发现SQL明显快起来!

例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL:

select count(*) from stuff where id_no in ('0','1') --(23秒)

分析:where条件中的'in'在逻辑上相当于'or',所以语法分析器会将in('0','1')转化为id_no='0' or id_no='1'来执行。我们期望它会根据每个or子句分别查找,
再将结果相加,这样可以利用id_no上的索引;但实际上(根据showplan),它却采用了“OR策略",即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。
实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时间竟达到220秒!还不如将or子句分开:

select count(*) from stuff where id_no='0'
select count(*) from stuff where id_no='1'

得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒,在620000行下,时间也只有4秒。或者用更好的方法,写一个简单的存储过程:

create proc count_stuff as
declare @a int
declare @b int
declare @c int
declare @d char(10)
begin
select @a=count(*) from stuff where id_no='0'
select @b=count(*) from stuff where id_no='1'
end
select @c=@a+@b
select @d=convert(char(10),@c)
print @d

直接算出结果,执行时间同上面一样快!

总结:可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽 可能将操作移至等号右边。in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。

要善于使用存储过程,它使SQL变得更加灵活和高效。从以上这些例子可以看出,SQL 优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充分利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实SQL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值