题目
地上有一个 m 行和 n 列的方格,横纵坐标范围分别是 0∼m−1 和 0∼n−1。
一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格。
但是不能进入行坐标和列坐标的数位之和大于 k 的格子。
请问该机器人能够达到多少个格子?
样例1
输入:k=7, m=4, n=5
输出:20
样例2
输入:k=18, m=40, n=40
输出:1484
解释:当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。
但是,它不能进入方格(35,38),因为3+5+3+8 = 19。
注意:
0<=m<=50
0<=n<=50
0<=k<=100
算法:
采用深度优先遍历
每个节点最多只会入队一次,所以时间复杂度不会超过方格中的节点个数。
最坏情况下会遍历方格中的所有点,所以时间复杂度就是 O(nm)。
class Solution {
public int movingCount(int threshold, int rows, int cols)
{
boolean[][] flag = new boolean[rows][cols];
return dfs(threshold,0,0,flag);
}
public int dfs(int k,int i,int j,boolean[][] flag){
if(i < 0 || i > flag.length-1 || j < 0 || j > flag[i].length-1 || flag[i][j] || (i/10+i%10+j/10+j%10) > k) return 0;
flag[i][j] = true;
return dfs(k,i+1,j,flag)+dfs(k,i-1,j,flag)+dfs(k,i,j+1,flag)+dfs(k,i,j-1,flag) + 1;
}
}